Use of Lake Frome Ground Truth Campaign as a Cross-Calibration of the Hyperion Instrument

Pamela Barry, Peter Jarecke, Jay Pearlman, TRW, Redondo Beach
David Jupp, Jenny Lovell, Susan Campbell, CSIRO, Canberra

July 9th 2001
IGARSS 2001
Presented by: Dr. Pamela Barry
Introduction

Hyperion Instrument and Data Cube

Calibration Approach

Lake Frome Ground Truth Process for Comparison

Results of Comparison and Contribution to Early Performance Verification

Continuing Effort
Hyperion Instrument – EO-1 Launch and Orbit

- **EO-1 Spacecraft launched November 21, 2000 from Vandenberg Air Force Base**
- **EO-1 orbit is one minute behind Landsat-7**
- **EO-1 supports Hyperion, ALI and AC**
Hyperion Image Overview

- 7.7 km swath width
- 160 km swath length (time variable)
- 30 meter spatial resolution
- 10 nm spectral resolution
- 200 radiometrically and spectrally calibrated continuous bands from 435 nm to 2400 nm
- Better than 6% absolute radiometric accuracy

Solar Baffle

Spectrometer

Telescope

Cryocooler
Hyperion Data Cube

Pushbroom configuration, entire swath width collected each frame sampled every 4.5 ms, or 223.4 frames/second.

Common fore-optics, dichroic filter reflects 400 nm to 1000 nm to the VNIR and transmits 900 nm to 2500 nm to the SWIR.

Gratings disperse light onto two focal planes

- **Produces a three dimensional data cube** 256x6925x242 in 30 seconds!
Hyperion Radiometric Calibration

Approach was to apply the pre-flight absolute radiometric calibration to on-orbit operations and verify absolute calibration via cross-comparisons.

Primary absolute radiometric standard is tied to high quantum efficiency photodiode trap detectors and calibration panel assembly at TRW used to derive the pre-flight calibration.

In general, the accuracy of calibration effort should be an order of magnitude more accurate than absolute requirement.

Cross-comparison techniques used to verify the absolute calibration on-orbit include: Solar Calibration, Lake Frome Campaign, Lunar Calibration, Cross-Instrument, Cross-Platform.
Pre-Flight calibration tied to LANDSAT, ALI, U of Arizona
Key Factors Impacting Calibration

<table>
<thead>
<tr>
<th></th>
<th>Absolute Knowledge</th>
<th>Intermediate Properties</th>
<th>Spacecraft Pointing</th>
<th>Strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Calibration</td>
<td>Models avail to community</td>
<td>Diffuse reflectance of Hyperion cover</td>
<td>Critical to modeling intermediate properties</td>
<td>Uniform across field-of-view</td>
</tr>
<tr>
<td></td>
<td>VNIR more accurate than SWIR</td>
<td></td>
<td></td>
<td>Constant</td>
</tr>
<tr>
<td>Lake Frome</td>
<td>Based on ground truth measurements</td>
<td>Atmospheric effects must be modeled</td>
<td>Depends on surface</td>
<td>User oriented effort</td>
</tr>
<tr>
<td>(vicarious)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunar Calibration</td>
<td>Based on Lunar models</td>
<td>none</td>
<td>Spacecraft scans moon. Relative moon, sun, sat</td>
<td>No intermediate properties. Constant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>angle</td>
<td></td>
</tr>
</tbody>
</table>

The table outlines the key factors impacting calibration for solar and lunar calibrations, detailing absolute knowledge, intermediate properties, spacecraft pointing, and their respective strengths.
Lake Frome Comparison Process

High resolution ground reflectance measurements referenced to spectralon

Convolved with Hyperion Bandwidth and sampled at Hyperion center wavelength

Sites 18,20,22,24 used for preliminary comparisons.
Fall along the same cross track pixel.
Lake Frome Comparison Process

Modeling of atmosphere enabled transfer to Top Of the Atmosphere Comparison

Geo-location identified Hyperion pixel location

Final Lake Frome Top of the Atmosphere Comparison

Site 20

![Graph showing comparison between Hyperion Measured TOA Radiance and CSIRO Estimate TOA Radiance](image_url)

Reflection of the Solar Irradiance modified by atmospheric effects
Lake Frome Comparison Process

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Lat.</th>
<th>Lon.</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>Uniform Salt</td>
<td>-30.80</td>
<td>139.68</td>
</tr>
<tr>
<td>020</td>
<td>Uniform Salt</td>
<td>-30.83</td>
<td>139.67</td>
</tr>
<tr>
<td>022</td>
<td>Mixed Salt and Mottle</td>
<td>-30.87</td>
<td>139.66</td>
</tr>
<tr>
<td>024</td>
<td>Uniform Salt</td>
<td>-30.90</td>
<td>139.65</td>
</tr>
</tbody>
</table>

Hyperion image was geo-located with the ground control points to enable direct comparison.

<table>
<thead>
<tr>
<th>Site</th>
<th>VNIR Pixel</th>
<th>VNIR Line</th>
<th>SWIR Pixel</th>
<th>SWIR Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>107</td>
<td>2219</td>
<td>108</td>
<td>2219</td>
</tr>
<tr>
<td>20</td>
<td>107</td>
<td>2343</td>
<td>108</td>
<td>2434</td>
</tr>
<tr>
<td>22</td>
<td>107</td>
<td>2467</td>
<td>108</td>
<td>2467</td>
</tr>
<tr>
<td>24</td>
<td>108</td>
<td>2592</td>
<td>109</td>
<td>2591</td>
</tr>
</tbody>
</table>
Lake Frome Comparison Process

Top of the Atmosphere Comparison sampled at the Hyperion center wavelength used to make radiance comparison

Compare results with results obtained with the solar calibration

Lake Frome Radiance Comparison
Site 20

- Ratio greater than 1 suggests Hyperion calibration underestimates radiance
- Locations dominated by atmospheric absorption removed from comparison
Comparison in the VNIR

Site 20&22 suggests Hyperion high, Site 18&24 suggest Hyperion low, Range +- 5%
Hyperion agreed to solar profile to +- 2%
Lake Frome verification at +-5% level in the VNIR

Final Comparison for the VNIR

Swing due to residual Atmospheric Effect
Comparison in the SWIR

Results vary based on Site and wavelength
Suggest variability in Ground Truth measurement since single field-of-view location
Hyperion was 5-8% lower the solar profile

Ground Error sources: BRDF variations, impurity of site, water content, measured reflectance, site percent variation

Not Coincident collect: Ground truth performed 12-19-01 and Hyperion pass was 1-05-01, weather conditions different. Atmospheric correction based on atmosphere measurements made on 1-05-01.

Atmospheric Estimate Based on a Solar Constant
Variation of Site

Variation in VNIR regime varies < 1% of signal
Variation in SWIR regime increases as with wavelength
Typical percent variation of each site

Variation of the Site Relative to the Signal Level
Site 20

Denotes approximate variation based on ground site measurements
Significant Performance Verification Contributions

Precise geo-location was critical in finalizing the Hyperion VNIR – SWIR coregistration

Geo-location with other platforms enables cross comparisons. January 20th collect to be used for cross-platform comparisons

Effort revealed the importance of identifying the solar model used in the atmospheric modeling codes

Analyzed data set from user perspective
Lake Frome Conclusions

Lake Frome supported the VNIR calibration, details of the SWIR comparison continue to be reviewed

Used to confirm VNIR-SWIR co-registration and enables cross-platform comparisons with Landsat 7 and potential others

Large site with a strong signal in the VNIR and lower signal in the SWIR, complements other calibration sites

Work in process with additional cross-platform comparisons planned and additional measurements scheduled for September

Support of CSIRO on Lake Frome effort and contributions to early orbit check out greatly appreciated
BACK UP / REFERENCE
Lake Frome Collection Notes

Site 020: 12/16/00 15:00 – 16:00, medium haze, 20% clouds, very clear hard surface

Site 022: 12/19/00 11:49-11:51, low-medium haze, 0% clouds, very hot, hard, surface

Site 018: 12/18/00 13:37- 14:04, medium-high haze, 50% clouds, molted area with significant changes in brightness

Site 024: 12/19/00 13:54-14:04, low-medium haze, 10% clouds, very hard, drier surface

Hyperion: 01/05/01 10:30, low haze, 0% clouds, dry
Initial results Hyperion 2-10% low,
Final results, smaller swing near atmosphere line, agreement +5%
Results grouped by site, Site 20&22 (Hyp_hi) and Site 18&24 (Hyp_lo)
Initial results: Sites 18, 20 & 24 (Hyp_lo), Site 22 (Hyp_hi),
Final results, Results grouped by site, Site 20 & 22 (Hyp_hi) and Site 18 & 24 (Hyp_lo)