
Contact Author: Steve Chien – chien@aig.jpl.nasa.gov
1 – Mitretek, 2 – Microtel LLC, 3 – The Hammers Company, 4 - Honeywell

The Autonomous Sciencecraft Embedded Systems Architecture

Steve Chien, Rob Sherwood,
Daniel Tran, Benjamin Cichy,

Gregg Rabideau,
Rebecca Castaño,

Ashley Davies

Jet Propulsion Laboratory,
California Institute of

Technology

Stuart Frye1, Bruce Trout2,
Jeff D’Agostino3,

Seth Shulman4 , Dan Mandl,

Goddard Space Flight Center

Darrell Boyer

Interface & Control Systems

Sandra Hayden5, Adam Sweet5,
Scott Christa6

NASA Ames Research Center

Abstract.
An Autonomous Science Agent has been flying onboard the
Earth Observing One Spacecraft since 2003. This software
enables the spacecraft to autonomously detect and responds to
science events occurring on the Earth such as volcanoes,
flooding, and snow melt.
 This agent includes AI-based software systems that perform
science data analysis, deliberative planning, and run-time
robust execution. This software is in routine use to fly the EO-
1 mission. In this paper we discuss the architecture used to
integrate these systems and lessons learned from its multi-year
flight on EO-1.

Keywords: Autonomy, Agents, Three Layer Architectures

1 Introduction
The Autonomous Sciencecraft Experiment (ASE) [15] is
currently flying autonomous agent software on the Earth
Observing One (EO-1) spacecraft [6]. This software uses
several integrated autonomy technologies to enable
autonomous science. Multiple algorithms to detect the
occurrence of science events based on remote sensing
imagery analyze science data onboard. These algorithms
are used to downlink science data only on change, and
detect features of scientific interest such as volcanic
eruptions, flooding, ice breakup, and presence of cloud
cover. These onboard science algorithms are inputs to
onboard decision-making algorithms that then modifies the
spacecraft observation plan to capture high value science
events. This new observation plan is then be executed by a
robust goal and task oriented execution system, able to
adjust the plan to succeed despite run-time anomalies and
uncertainties. Together these technologies enable
autonomous goal-directed exploration and data acquisition
to maximize science return. This paper describes the
Autonomous Sciencecraft Experiment (ASE) effort to
develop and deploy the Autonomous Science Agent on the
Earth Observing One spacecraft.
 The ASE onboard flight software includes several
autonomy software components:

▪ Onboard science algorithms that analyze the image data
to detect trigger conditions such as science events,
“interesting” features, changes relative to previous
observations, and cloud detection for onboard image
masking

▪ Robust execution management software using the
Spacecraft Command Language (SCL) [7] package to
enable event-driven processing and low-level autonomy

▪ The Continuous Activity Scheduling Planning Execution
and Replanning (CASPER) [2] software that replans
activities, including downlink, based on science
observations in the previous orbit cycles

▪ The Livingstone 2 Model-based Diagnosis System [13]
which tracks spacecraft state and detects anomalies in
operations.

The onboard science algorithms analyze the images to
extract static features and detect changes relative to
previous observations. The software analyzes EO-1
Hyperion data to automatically identify regions of interest
including land, ice, snow, water, and thermally hot areas.
Repeat imagery using these algorithms can detect regions
of change (such as flooding and ice melt) as well as regions
of activity (such as lava flows). Using these algorithms
onboard enables retargeting and search, e.g., retargeting the
instrument on a subsequent orbit cycle to identify and
capture the full extent of a flood. On future interplanetary
space missions, onboard science analysis will enable
capture of short-lived science phenomena. These can be
captured at the finest time-scales without overwhelming
onboard memory or downlink capacities by varying the
data collection rate on the fly. Examples include: eruption
of volcanoes on Io, formation of jets on comets, and phase
transitions in ring systems. Generation of derived science
products (e.g., boundary descriptions, catalogs) and
change-based triggering will also reduce data volumes to a
manageable level for extended duration missions that study
long-term phenomena such as atmospheric changes at
Jupiter and flexing and cracking of the ice crust and
resurfacing on Europa.
 The onboard planner (CASPER) generates mission
operations plans from goals provided by the onboard
science analysis module. The model-based planning

algorithms enables rapid response to a wide range of
operations scenarios based on a deep model of spacecraft
constraints, including faster recovery from spacecraft
anomalies. The onboard planner accepts as inputs the
science and engineering goals and ensures high-level goal-
oriented behavior.
 The robust execution system (SCL) accepts the
CASPER-derived plan as an input and expands the plan
into low-level commands. SCL monitors the execution of
the plan and has the flexibility and knowledge to perform
event-driven commanding to enable local improvements in
execution as well as local responses to anomalies.

Figure 1. Autonomous Science Scenario

A typical ASE scenario involves monitoring of active
volcano regions such as Mt. Etna in Sicily, Italy. ASE has
already been used to perform similar demonstrations. The
ASE concept is described as follows:

1. Initially, ASE has a list of science targets to
monitor that have been sent as high-level goals
from the ground.

2. As part of normal operations, CASPER generates
a plan to monitor the targets on this list by
periodically imaging them with the Hyperion
instrument. For volcanic studies, the infra-red and
near infra-red bands are used.

3. During execution of this plan, the EO-1 spacecraft
images Mt. Etna with the Hyperion instrument.

4. The onboard science algorithms analyze the
image and detect a fresh lava flow, or active vent.
If new activity is detected, a science goal is
generated to continue monitoring the volcanic
site. If no activity is observed, the image is not
downlinked.

5. Assuming a new goal is generated, CASPER
plans to acquire a further image of the ongoing
volcanic activity.

6. The SCL software executes the CASPER
generated plan to re-image the site.

7. This cycle is then repeated on subsequent
observations.

Building autonomy software for space missions has a
number of challenges.

1. Limited, intermittent communications to the
agent. A typical spacecraft in low earth orbit
(such as EO-1) has 8 10-minute communications
opportunities per day. This means that the
spacecraft must be able to operate for long periods
of time without supervision. For deep space
missions the spacecraft may be in
communications far less frequently. Some deep
space missions only contact the spacecraft once
per week, or even once every several weeks.

2. Spacecraft are very complex. A typical spacecraft
has thousands of components, each of which must
be carefully engineered to survive rigors of space
(extreme temperature, radiation, physical
stresses). Add to this the fact that many
components are one-of-a-kind and thus have
behaviors that are hard to characterize.

3. Limited observability. Because processing
telemetry is expensive, onboard storage is limited,
and downlink bandwidth is limited, engineering
telemetry is limited. Thus onboard software must
be able to make decisions on limited information
and ground operations teams must be able to
operate the spacecraft with even more limited
information.

4. Limited computing power. Because of limited
power onboard, spacecraft computing resources
are usually very constrained. An average
spacecraft CPUs offer 25 MIPS and 128 MB
RAM – far less than a typical personal computer.
Our CPU allocation for ASE on EO-1 is 4 MIPS
and 128MB RAM.

5. High stakes. A typical space mission costs
hundreds of millions of dollars, any failure has
significant economic impact. The total EO-1
Mission cost is over $100 million dollars. Over
financial cost, many launch and/or mission
opportunities are limited by planetary geometries.
In these cases, if a space mission is lost it may be
years before another similar mission can be
launched. Additionally, a space mission can take
years to plan, construct the spacecraft, and reach
their targets. This delay can be catastrophic.

Initial Image

taken by
Spacecraft

Onboard
Image

Processing &
Feature/Cloud

Detection

Onboard
Replanning

Image
New

Target

Retarget for New
Observation Goals

In the remainder of this paper we describe the ASE
software architecture, components, and lessons learned
regarding its architecture.

2 The EO-1 Mission
Earth Observing-1 (EO-1) is the first satellite in NASA's
New Millennium Program Earth Observing series. EO-1
was launched on a Delta 7320 from Vandenberg Air Force
Base on November 21, 2000. Its orbit allows for 16-day
repeat tracks, with 3 over flights per 16-day cycle with a
less than 10-degree change in viewing angle.
 ASE uses the Hyperion hyper spectral instrument. The
instrument typically images a 7.5 km by 42 km land area at
30m per pixel.
 The EO-1 spacecraft has two Mongoose M5 processors.
The first M5 is used for the EO-1 command and data
handling functions. The other M5 is part of the WARP
(Wideband Advanced Recorder Processor), a large mass
storage device. Each M5 runs at 12 MHz (for ~8 MIPS)
and has 256 MB RAM. Both M5’s run the VxWorks
operating system. The ASE software operates on the
WARP M5. This provides an added level of safety for the
spacecraft since the ASE software does not run on the main
spacecraft processor.

3 The EO-1 Science Agent
The autonomy software on EO-1 is organized into a
traditional three-layer architecture (See Figure 2.). At the
highest level of abstraction, the Continuous Activity
Scheduling Planning Execution and Replanning (CASPER)
software is responsible for mission planning functions.
CASPER schedules science activities while respecting
spacecraft operations and resource constraints. The
duration of the planning process is on the order of tens of
minutes. CASPER scheduled activities are inputs to the
Spacecraft Command Language (SCL) system, which
generates the detailed sequence commands corresponding
to CASPER scheduled activities. SCL operates on the
several second timescale. Below SCL the EO-1 flight
software is responsible for lower level control of the
spacecraft and also operates a full layer of independent
fault protection. The interface from SCL to the EO-1 flight
software is at the same level as ground generated command
sequences. The science analysis software is scheduled by
CASPER and executed by SCL in batch mode. The results
from the science analysis software result in new
observation requests presented to the CASPER system for
integration in the mission plan.

This layered architecture was chosen for two principal
reasons:

1. The layered architecture enables separation of
responses based on timescale and most
appropriate representation. The flight software
level must implement control loops and fault
protection and respond very rapidly (within one
second) and is thus directly coded in C. SCL

must respond quickly (in seconds) nd perform
many procedural actions. Hence SCL uses as its
core representation scripts, rules, and database
records. CASPER must reason about longer term
operations, state, and resource constraints.
Because of its time latency, it can afford to use a
mostly declarative artificial intelligence
planner/scheduler representation. CASPER is
able to respond within 10s of minutes.

2. The layered architecture enables redundant
implementation of critical functions – most
notable spacecraft safety constraint checking. In
the design of our spacecraft agent model, we
implemented spacecraft safety constraints in all
levels where feasible.

Figure 2. Autonomy Software Architecture

Each of the software modules operates at a separate
priority level within the VxWorks real-time operating
system onboard EO-1. The batch processes (Science) have
the lowest priority, with CASPER, L2, and SCL with
increasing priority.

This agent architecture is designed to scale to multiple
agents with agents communicating at either the planner
level (via goals) or the execution level (to coordinate
execution) [18].
 We now describe each of the components of our
architecture in further detail.

3.1 Onboard Science Analysis
The first step in the autonomous science decision cycle is
detection of interesting science events. We are flying
several science event detection modules including:

▪ Thermal anomaly detection – uses infrared spectra peaks

to detect lava flows and other volcanic activity.
▪ Cloud detection – uses intensities at six different spectra

and thresholds to identify likely clouds in scenes.
▪ Flood scene classification – uses ratios at several spectra

to identify signatures of water inundation as well as
vegetation changes caused by flooding. (see Figure 4.)

▪ Change detection – uses multiple spectra to identify
regions changed from one image to another. This
technique is applicable to many science phenomena

CASPER Planner
– response in 10’s of minutes

SCL – response in seconds with rules, scripts

EO-1 Conventional Flight Software
reflexive response

Onboard Science

Band ExtractionObservation
Planner

Spacecraft Hardware

Raw Instrument Data

Image
Overflight

Times

High level
S/C State

Information

Plans of Activities
(high level)

Sensor Telemetry

Commands
(low level)

S/C State

Control Signals
(very low level)

Observation
Goals

l2 – model-based
diagnosis

S/C State

including lava flows, flooding, freezing and thawing and
is used in conjunction with cloud detection.

Onboard detection of these science events enables ASE to
monitor targets for extended periods of time for activity
and automatically retarget when events are detected. For
example, ASE might be used to monitor a dry riverbed
acquiring 1 image every 16 days – but to increase the
observation cadence to 5 images every 16 days when
flooding is detected activity is detected.

Figure 4. Flood detection timeseries imagery of
Australia’s Diamantina river with visual spectra at left and
flood detection map at right.

 Of particular interest is the study of Snow-Water-Ice-
Land (SWIL) events. These algorithms are used to detect
lake freeze/thaw cycles and seasonal sea ice. In this area,
the ASE science team first manually developed classifiers.
We later used scientist labeled data in conjunction with
machine learning techniques to automatically develop
improved classifiers. In particular, Support Vector
Machines were used to develop classifiers that
outperformed the scientist derived classifiers. It is these
SVM classifiers that are currently being used for EO-1
operations.

3.2 Onboard Mission Planning
The CASPER [2] planner enables ASE to autonomously
replan its future activities based on science event
detections. CASPER is a deliberative, model-based AI
planner which uses a local search approach [12] to develop
operations plans.
 Because onboard computing resources are scarce,
CASPER must be very efficient in generating plans. While
a typical desktop or laptop PC may have 2000-3000 MIPS
performance, 5-20 MIPS is more typical onboard a
spacecraft. In the case of EO-1, the Mongoose V CPU has
approximately 8 MIPS. Of the 3 software packages,
CASPER is by far the most computationally intensive. For
that reason, our optimization efforts were focused on
CASPER. Careful engineering and modeling were
required to enable CASPER to build a plan in tens of
minutes on the relatively slow CPU.
 In the context of ASE, CASPER reasons about the
majority of spacecraft operations constraints directly in its
modeling language. However, ground operations still
perform spacecraft orbit maintenance and momentum
management.

3.3 Onboard Robust Execution
ASE uses the Spacecraft Command Language (SCL) [7] to
provide robust execution. SCL is a software package that
integrates procedural programming with a real-time,
forward-chaining, rule-based system. A publish/subscribe
software bus allows the distribution of notification and
request messages to integrate SCL with other onboard
software. This design enables both loose or tight coupling
between SCL and other flight software as appropriate.
 Many aspects of autonomy are implemented in SCL.
For example, SCL implements many constraint checks that
are redundant with those in the EO-1 fault protection
software. Before SCL sends each command to the EO-1
command processor, it undergoes a series of constraint
checks to ensure that it is a valid command. Any pre-
requisite states required by the command are checked (such
as the communications system being in the correct mode to
accept a command). Using SCL to check these constraints
(while included in the CASPER model) provides an
additional level of safety to the autonomy flight software.

3.4 Model-based Diagnosis
More recently(Fall 2004) we have begun flying the
Livingstone 2 diagnosis system. Both L2 and CASPER
use models of the spacecraft separate from the reasoning
engine: the models are tailored for a particular application
without the need to change the software, allowing reuse of
the advanced reasoning software across applications. The
intent is that a trained subsystem engineer could build these
models even at the design stage. The diagnostic capability
of an on-board agent can then use the models to monitor
the health of the spacecraft and detect faults. The most
significant advances of L2 over previous work which were
demonstrated are:

• Multiple Hypotheses and Multiple Hypotheses
with Backtracking - Capability to track multiple
diagnostic hypotheses and revise hypotheses
given new evidence (backtracking), important in
any complex system;

• Diagnosis During Transients - Capability to
monitor the spacecraft state and diagnose faults
during transients, both under partial observability
(before telemetry responses are seen) and whilst
the physical dynamics of the system are settling.

3.5 Status

 The ASE software has flown in a series of increasing
tests beginning in March 2003. Full autonomous science
operations were first demonstrated in January 2004. As of
February 2005, ASE software had been used to
successfully acquire over 1000 science images and had
operated as long as three weeks continuously. Our
operations have been so successful the EO-1 flight
operations team now uses the ASE software for normal
operations.

4. Systems and Architectural Lessons Learned
on ASE

One of the most important lessons learned in the flight of
ASE was that the overall architecture and systems used
were extremely synergistic and key to the success of the
experiment. The two components that represent mission
operations and spacecraft constraint knowledge (CASPER
and SCL) have very different representations. CASPER
uses an activity centered model that represents spacecraft
states, resources, and timing requirements. SCL easily
encodes procedures in the form of Do A then Do B then
wait for condition C, then do E. These varied
representations were invaluable in representing a wide
range of operations situations and responses (this result is
consistent with other experiences in automated planning
[16 17]).
 Additionally, the ASE layered architecture enabled
redundant implementation of safety constraints. Design of
these constraints included a spacecraft safety review. In
this process, experts from each of the spacecraft subsystem
areas (e.g. guidance, navigation and control, solid state
recorder, Hyperion instrument, power, …) studied the
description of the ASE software and commands that the
ASE SW would execute and derived a list of potential
hazards to spacecraft health. For each of these hazards, a
set of possible safeguards was conjectured: implemented
by operations procedure, implemented in CASPER,
implemented in SCL, and implemented in the FSS. Every
safeguard able to be implemented with reasonable effort
was implemented and scheduled for testing. Such analysis
for two risks is shown below.

Table 1. Sample safety analysis for two risks.

Instruments overheat
from being left on too

long

Instruments
exposed to sun

Operations

For each turn on
command, look for the

following turn off
command. Verify that

they are within the
maximum separation.

Verify orientation of
spacecraft during

periods when
instrument covers are

open.

CASPER

High-level activity
decomposes into turn

on and turn off
activities that are with

the maximum
separation.

Maneuvers must be
planned at times

when the covers are
closed (otherwise,

instruments are
pointing at the earth)

SCL

Rules monitor the
“on” time and issue a
turn off command if

left on too long.

Constraints prevent
maneuver scripts
from executing if
covers are open.

FSS

Fault protection
software will shut

down the instrument if
left on too long.

Fault protection will
safe the spacecraft if
covers are open and

pointing near the sun.

 Another important theme which was validated by flight
experience is that encoding information in models rather
than code yields many benefits. First, models are often

more readable and directly represent the intent. This
results in more rapid encoding, easier validation, and
shared understanding of the overall system by larger
elements of the team. Second, updates to the overall
system that only require a model change are much easier.
Code changes required that code patches be generated,
uploaded and implemented (as patches to the executable
binary onboard), a process expensive in effort, time, and
filled with chances for mistakes. In the worst case,
extensive code changes could require a complete binary
image upload (see below). In contrast, model changes
require an upload of a text or binary file and a restart of the
ASE control software, a much easier process.

10 Related Work, and Conclusions
In 1999, the Remote Agent experiment (RAX) [10]
executed for a several days onboard the NASA Deep Space
One mission. RAX is an example of a classic three-tiered
architecture [5], as is ASE. RAX demonstrated a batch
onboard planning capability (as opposed to CASPER’s
continuous planning) and RAX did not demonstrate
onboard science. PROBA [11] is a European Space
Agency (ESA) mission demonstrates onboard autonomy
and launched in 2001. However, ASE has more of a focus
on model-based autonomy than PROBA.
 The Three Corner Sat (3CS) University Nanosat mission
used CASPER onboard planning software integrated with
the SCL ground and flight execution software [1]. The
3CS mission was launched in December 2004 but the
spacecraft were lost due to a deployment failure. The 3CS
autonomy software includes onboard science data
validation, replanning, robust execution, and multiple
model-based anomaly detection. The 3CS mission is
considerably less complex than EO-1 but still represents an
important step in the integration and flight of onboard
autonomy software.
 More recent work from NASA Ames Research Center is
focused on building the IDEA planning and execution
architecture [9]. In IDEA, the planner and execution
software are combined into a “reactive planner” and
operate using the same domain model. A single planning
and execution model can simplify validation, which is a
difficult problem for autonomous systems. For EO-1, the
CASPER planner and SCL executive use separate models.
While this has the advantage of the flexibility of both
procedural and declarative representations, a single model
would be easier to validate. We have designed the
CASPER modeling language to be used by domain experts,
thus not requiring planning experts. Our use of SCL is
similar to the “plan runner” in IDEA but SCL encodes
more intelligence. The EO-1 science analysis software is
defined as one of the “controlling systems” in IDEA. In
the IDEA architecture, a communications wrapper is used
to send messages between the agents, similar to the
software bus in EO-1. In the description of IDEA there is
no information about the deployment of IDEA to any
domains, so a comparison of the performance or
capabilities is not possible at this time. In many ways
IDEA represents a more AI-centric architecture with

declarative modeling at its core and ASE represents more
of an evolutionary engineered solution.
 ASE was originally scheduled for flight on the Techsat-
21 mission [14]. However this mission was cancelled and
the software was adapted for flight on EO-1. The principal
changes from the Techsat-21 to EO-1 are that the science
payload was changed from a synthetic aperture radar
(SAR) to a hyperspectral imaging device (Hyperion). This
change requires significant alteration to the science targets
and analysis algorithms. The basic software architecture
and components (e.g. CASPER and SCL) have remained
the same. This paper also reports on some of our
experiences in getting the software to flight and operations.
 ASE on EO-1 demonstrates an integrated autonomous
mission using onboard science analysis, replanning, and
robust execution. The ASE performs intelligent science
data selection that will lead to a reduction in data
downlink. In addition, the ASE will increase science
return through autonomous retargeting. Demonstration of
these capabilities onboard EO-1 will enable radically
different missions with significant onboard decision-
making leading to novel science opportunities. The
paradigm shift toward highly autonomous spacecraft will
enable future NASA missions to achieve significantly
greater science returns with reduced risk and reduced
operations cost.

References
1. S. Chien, B. Engelhardt, R. Knight, G. Rabideau, R.

Sherwood, E. Hansen, A. Ortiviz, C. Wilklow, S.
Wichman , "Onboard Autonomy on the Three Corner
Sat Mission," Proc i-SAIRAS 2001, Montreal,
Canada, June 2001.

2. S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, "Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling,"
Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000. (also
casper.jpl.nasa.gov)

3. A.G. Davies, R. Greeley, K. Williams, V. Baker, J.
Dohm, M. Burl, E. Mjolsness, R. Castano, T. Stough,
J. Roden, S. Chien, R. Sherwood, "ASC Science
Report," August 2001. (see ase.jpl.nasa.gov)

4. Davies, A. G., E.D. Mjolsness, A.G. Gray, T.F. Mann,
R. Castano, T.A. Estlin and R.S. Saunders (1999)
Hypothesis-driven active data analysis of geological
phenomena using semi-autonomous rovers: exploring
simulations of Martian hydrothermal deposits. EOS,
Trans. Amer. Geophys. Union, 80, no. 17, S210.

5. E. Gat et al., Three-Layer Architectures. in D.
Kortenkamp et al. eds. AI and Mobile Robots. AAAI
Press, 1998.

6. Goddard Space Flight Center, EO-1 Mission page:
http://EO-1.gsfc.nasa.gov

7. Interface and Control Systems, SCL Home Page,
sclrules.com

8. M. C. Malin and K. S. Edgett, “Evidence for recent
groundwater seepage and surface runoff on Mars,”
Science, 288, 2330-2335, 2000.

9. N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C.
Plaunt, “IDEA: Planning at the Core of Autonomous
Reactive Agents,” Proceedings of the Workshops at
the AIPS-2002 Conference, Tolouse, France, April
2002.

10. NASA Ames, Remote Agent Experiment Home Page,
http://ic.arc.nasa.gov/projects/remote-agent/. See also
Remote Agent: To Boldly Go Where No AI System
Has Gone Before.Nicola Muscettola, P. Pandurang
Nayak, Barney Pell, and Brian Williams. Artificial
Intelligence 103(1-2):5-48, August 1998

11. The PROBA Onboard Autonomy Platform,
http://www.estec.esa.nl/proba/

12. G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A.
Govindjee, "Iterative Repair Planning for Spacecraft
Operations in the ASPEN System," Intl Symp
Artificial Int Robotics & Automation in Space,
Noordwijk, The Netherlands, June 1999.

13. J. Kurien and P. Nayak. “Back to the future for
consistency-based trajectory tracking.” Proc 7th Natl
Conf Artificial Intelligence (AAAI'2000), 2000.

14. S. Chien, et al., “The Techsat-21 Autonomous Space
Science Agent,” International Conference on
Autonomous Agents and Multi-agent Systems
(AAMAS 2002). Bologna, Italy. July 2002

15. S. Chien, et al. “The EO-1 Autonomous Science
Agent,” International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS 2004).
New York City, NY, July 2004.

16. T. Estlin, S. Chien, and X. Wang, ``Hierarchical Task
Network and Operator-Based Planning: Two
Complementary Approaches to Real-World Planning,''
Journal of Experimental and Theoretical Artificial
Intelligence, 13:379-395, 2001.

17. David E. Wilkins and Marie desJardins “A Call for
Knowledge-Based Planning” AI Magazine 22(1):
Spring 2001, 99-115.

18. B. Clement, A. Barrett, “Continual Coordination
through Shared Activities” 2nd International
Conference on Autonomous and Multi-Agent Systems
(AAMAS 2003). Melbourne, Australia. July 2003

Acknowledgement

Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

