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Abstract. 
An Autonomous Science Agent has been flying onboard the 
Earth Observing One Spacecraft since 2003.  This software 
enables the spacecraft to autonomously detect and responds to 
science events occurring on the Earth such as volcanoes, 
flooding, and snow melt. 
 This agent includes AI-based software systems that perform 
science data analysis, deliberative planning, and run-time 
robust execution.  This software is in routine use to fly the EO-
1 mission.  In this paper we discuss the architecture used to 
integrate these systems and lessons learned from its multi-year 
flight on EO-1. 
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1 Introduction 
The Autonomous Sciencecraft Experiment (ASE) [15] is 
currently flying autonomous agent software on the Earth 
Observing One (EO-1) spacecraft [6].  This software uses 
several integrated autonomy technologies to enable 
autonomous science.  Multiple algorithms to detect the 
occurrence of science events based on remote sensing 
imagery analyze science data onboard.  These algorithms 
are used to downlink science data only on change, and 
detect features of scientific interest such as volcanic 
eruptions, flooding, ice breakup, and presence of cloud 
cover.  These onboard science algorithms are inputs to 
onboard decision-making algorithms that then modifies the 
spacecraft observation plan to capture high value science 
events.  This new observation plan is then be executed by a 
robust goal and task oriented execution system, able to 
adjust the plan to succeed despite run-time anomalies and 
uncertainties.  Together these technologies enable 
autonomous goal-directed exploration and data acquisition 
to maximize science return. This paper describes the 
Autonomous Sciencecraft Experiment (ASE) effort to 
develop and deploy the Autonomous Science Agent on the 
Earth Observing One spacecraft.   
 The ASE onboard flight software includes several 
autonomy software components:  
 

▪ Onboard science algorithms that analyze the image data 
to detect trigger conditions such as science events, 
“interesting” features, changes relative to previous 
observations, and cloud detection for onboard image 
masking 

▪ Robust execution management software using the 
Spacecraft Command Language (SCL) [7] package to 
enable event-driven processing and low-level autonomy 

▪ The Continuous Activity Scheduling Planning Execution 
and Replanning (CASPER) [2] software that replans 
activities, including downlink, based on science 
observations in the previous orbit cycles 

▪ The Livingstone 2 Model-based Diagnosis System [13] 
which tracks spacecraft state and detects anomalies in 
operations. 
 

The onboard science algorithms analyze the images to 
extract static features and detect changes relative to 
previous observations. The software analyzes EO-1 
Hyperion data to automatically identify regions of interest 
including land, ice, snow, water, and thermally hot areas.  
Repeat imagery using these algorithms can detect regions 
of change (such as flooding and ice melt) as well as regions 
of activity (such as lava flows).  Using these algorithms 
onboard enables retargeting and search, e.g., retargeting the 
instrument on a subsequent orbit cycle to identify and 
capture the full extent of a flood.  On future interplanetary 
space missions, onboard science analysis will enable 
capture of short-lived science phenomena.  These can be 
captured at the finest time-scales without overwhelming 
onboard memory or downlink capacities by varying the 
data collection rate on the fly. Examples include: eruption 
of volcanoes on Io, formation of jets on comets, and phase 
transitions in ring systems. Generation of derived science 
products (e.g., boundary descriptions, catalogs) and 
change-based triggering will also reduce data volumes to a 
manageable level for extended duration missions that study 
long-term phenomena such as atmospheric changes at 
Jupiter and flexing and cracking of the ice crust and 
resurfacing on Europa.   
 The onboard planner (CASPER) generates mission 
operations plans from goals provided by the onboard 
science analysis module. The model-based planning 



 

algorithms enables rapid response to a wide range of 
operations scenarios based on a deep model of spacecraft 
constraints, including faster recovery from spacecraft 
anomalies.   The onboard planner accepts as inputs the 
science and engineering goals and ensures high-level goal-
oriented behavior. 
 The robust execution system (SCL) accepts the 
CASPER-derived plan as an input and expands the plan 
into low-level commands.  SCL monitors the execution of 
the plan and has the flexibility and knowledge to perform 
event-driven commanding to enable local improvements in 
execution as well as local responses to anomalies.   

 
 
 
Figure 1. Autonomous Science Scenario 
 
A typical ASE scenario involves monitoring of active 
volcano regions such as Mt. Etna in Sicily, Italy.  ASE has 
already been used to perform similar demonstrations.  The 
ASE concept is described as follows:  
 

1. Initially, ASE has a list of science targets to 
monitor that have been sent as high-level goals 
from the ground. 

2. As part of normal operations, CASPER generates 
a plan to monitor the targets on this list by 
periodically imaging them with the Hyperion 
instrument.  For volcanic studies, the infra-red and 
near infra-red bands are used. 

3. During execution of this plan, the EO-1 spacecraft 
images Mt. Etna with the Hyperion instrument. 

4. The onboard science algorithms analyze the 
image and detect a fresh lava flow, or active vent.  
If new activity is detected, a science goal is 
generated to continue monitoring the volcanic 
site.  If no activity is observed, the image is not 
downlinked.   

5. Assuming a new goal is generated, CASPER 
plans to acquire a further image of the ongoing 
volcanic activity. 

6. The SCL software executes the CASPER 
generated plan to re-image the site.  

7. This cycle is then repeated on subsequent 
observations.  

  
Building autonomy software for space missions has a 
number of challenges.  
 

1. Limited, intermittent communications to the 
agent.   A typical spacecraft in low earth orbit 
(such as EO-1) has 8 10-minute communications 
opportunities per day.  This means that the 
spacecraft must be able to operate for long periods 
of time without supervision.  For deep space 
missions the spacecraft may be in 
communications far less frequently.  Some deep 
space missions only contact the spacecraft once 
per week, or even once every several weeks. 

2. Spacecraft are very complex.  A typical spacecraft 
has thousands of components, each of which must 
be carefully engineered to survive rigors of space 
(extreme temperature, radiation, physical 
stresses).  Add to this the fact that many 
components are one-of-a-kind and thus have 
behaviors that are hard to characterize. 

3. Limited observability. Because processing 
telemetry is expensive, onboard storage is limited, 
and downlink bandwidth is limited, engineering 
telemetry is limited.  Thus onboard software must 
be able to make decisions on limited information 
and ground operations teams must be able to 
operate the spacecraft with even more limited 
information. 

4. Limited computing power.  Because of limited 
power onboard, spacecraft computing resources 
are usually very constrained.  An average 
spacecraft CPUs offer 25 MIPS and 128 MB 
RAM – far less than a typical personal computer.  
Our CPU allocation for ASE on EO-1 is 4 MIPS 
and 128MB RAM. 

5. High stakes.  A typical space mission costs 
hundreds of millions of dollars, any failure has 
significant economic impact.  The total EO-1 
Mission cost is over $100 million dollars.  Over 
financial cost, many launch and/or mission 
opportunities are limited by planetary geometries.  
In these cases, if a space mission is lost it may be 
years before another similar mission can be 
launched.  Additionally, a space mission can take 
years to plan, construct the spacecraft, and reach 
their targets. This delay can be catastrophic.  
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In the remainder of this paper we describe the ASE 
software architecture, components, and lessons learned 
regarding its architecture.   

2 The EO-1 Mission  
Earth Observing-1 (EO-1) is the first satellite in NASA's 
New Millennium Program Earth Observing series.  EO-1 
was launched on a Delta 7320 from Vandenberg Air Force 
Base on November 21, 2000.  Its orbit allows for 16-day 
repeat tracks, with 3 over flights per 16-day cycle with a 
less than 10-degree change in viewing angle.   
 ASE uses the Hyperion hyper spectral instrument.  The 
instrument typically images a 7.5 km by 42 km land area at 
30m per pixel. 
 The EO-1 spacecraft has two Mongoose M5 processors.  
The first M5 is used for the EO-1 command and data 
handling functions. The other M5 is part of the WARP 
(Wideband Advanced Recorder Processor), a large mass 
storage device.  Each M5 runs at 12 MHz (for ~8 MIPS) 
and has 256 MB RAM.  Both M5’s run the VxWorks 
operating system.  The ASE software operates on the 
WARP M5.  This provides an added level of safety for the 
spacecraft since the ASE software does not run on the main 
spacecraft processor.  

3 The EO-1 Science Agent  
The autonomy software on EO-1 is organized into a 
traditional three-layer architecture (See Figure 2.).  At the 
highest level of abstraction, the Continuous Activity 
Scheduling Planning Execution and Replanning (CASPER) 
software is responsible for mission planning functions.  
CASPER schedules science activities while respecting 
spacecraft operations and resource constraints.  The 
duration of the planning process is on the order of tens of 
minutes.  CASPER scheduled activities are inputs to the 
Spacecraft Command Language (SCL) system, which 
generates the detailed sequence commands corresponding 
to CASPER scheduled activities.  SCL operates on the 
several second timescale.  Below SCL the EO-1 flight 
software is responsible for lower level control of the 
spacecraft and also operates a full layer of independent 
fault protection.  The interface from SCL to the EO-1 flight 
software is at the same level as ground generated command 
sequences.  The science analysis software is scheduled by 
CASPER and executed by SCL in batch mode.  The results 
from the science analysis software result in new 
observation requests presented to the CASPER system for 
integration in the mission plan. 
 
This layered architecture was chosen for two principal 
reasons: 
 

1. The layered architecture enables separation of 
responses based on timescale and most 
appropriate representation.  The flight software 
level must implement control loops and fault 
protection and respond very rapidly (within one 
second) and is thus directly coded in C.  SCL 

must respond quickly (in seconds) nd perform 
many procedural actions.  Hence SCL uses as its 
core representation scripts, rules, and database 
records.  CASPER must reason about longer term 
operations, state, and resource constraints.  
Because of its time latency, it can afford to use a 
mostly declarative artificial intelligence 
planner/scheduler representation.  CASPER is 
able to respond within 10s of minutes. 

2. The layered architecture enables redundant 
implementation of critical functions – most 
notable spacecraft safety constraint checking.  In 
the design of our spacecraft agent model, we 
implemented spacecraft safety constraints in all 
levels where feasible. 

 

 
Figure 2. Autonomy Software Architecture 
 
Each of the software modules operates at a separate 
priority level within the VxWorks real-time operating 
system onboard EO-1.  The batch processes (Science) have 
the lowest priority, with CASPER, L2, and SCL with 
increasing priority.   

This agent architecture is designed to scale to multiple 
agents with agents communicating at either the planner 
level (via goals) or the execution level (to coordinate 
execution) [18]. 
 We now describe each of the components of our 
architecture in further detail. 

3.1 Onboard Science Analysis 
The first step in the autonomous science decision cycle is 
detection of interesting science events.  We are flying 
several science event detection modules including:  
 
▪ Thermal anomaly detection – uses infrared spectra peaks 

to detect lava flows and other volcanic activity.  
▪ Cloud detection  – uses intensities at six different spectra 

and thresholds to identify likely clouds in scenes.  
▪ Flood scene classification – uses ratios at several spectra 

to identify signatures of water inundation as well as 
vegetation changes caused by flooding. (see Figure 4.) 

▪ Change detection – uses multiple spectra to identify 
regions changed from one image to another.  This 
technique is applicable to many science phenomena 
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including lava flows, flooding, freezing and thawing and 
is used in conjunction with cloud detection. 

 
Onboard detection of these science events enables ASE to 
monitor targets for extended periods of time for activity 
and automatically retarget when events are detected.  For 
example, ASE might be used to monitor a dry riverbed 
acquiring 1 image every 16 days – but to increase the 
observation cadence to 5 images every 16 days when 
flooding is detected activity is detected.   

 
Figure 4. Flood detection timeseries imagery of 
Australia’s Diamantina river with visual spectra at left and 
flood detection map at right.  
 
   Of particular interest is the study of Snow-Water-Ice-
Land (SWIL) events.  These algorithms are used to detect 
lake freeze/thaw cycles and seasonal sea ice.  In this area, 
the ASE science team first manually developed classifiers.  
We later used scientist labeled data in conjunction with 
machine learning techniques to automatically develop 
improved classifiers.  In particular, Support Vector 
Machines were used to develop classifiers that 
outperformed the scientist derived classifiers.  It is these 
SVM classifiers that are currently being used for EO-1 
operations. 
 

3.2 Onboard Mission Planning 
The CASPER [2] planner enables ASE to autonomously 
replan its future activities based on science event 
detections.  CASPER is a deliberative, model-based AI 
planner which uses a local search approach [12] to develop 
operations plans.   
 Because onboard computing resources are scarce, 
CASPER must be very efficient in generating plans.  While 
a typical desktop or laptop PC may have 2000-3000 MIPS 
performance, 5-20 MIPS is more typical onboard a 
spacecraft.  In the case of EO-1, the Mongoose V CPU has 
approximately 8 MIPS.  Of the 3 software packages, 
CASPER is by far the most computationally intensive.  For 
that reason, our optimization efforts were focused on 
CASPER.  Careful engineering and modeling were 
required to enable CASPER to build a plan in tens of 
minutes on the relatively slow CPU. 
 In the context of ASE, CASPER reasons about the 
majority of spacecraft operations constraints directly in its 
modeling language.  However, ground operations still 
perform spacecraft orbit maintenance and momentum 
management.   

3.3 Onboard Robust Execution  
ASE uses the Spacecraft Command Language (SCL) [7] to 
provide robust execution.  SCL is a software package that 
integrates procedural programming with a real-time, 
forward-chaining, rule-based system.  A publish/subscribe 
software bus allows the distribution of notification and 
request messages to integrate SCL with other onboard 
software.  This design enables both loose or tight coupling 
between SCL and other flight software as appropriate.   
 Many aspects of autonomy are implemented in SCL.  
For example, SCL implements many constraint checks that 
are redundant with those in the EO-1 fault protection 
software.  Before SCL sends each command to the EO-1 
command processor, it undergoes a series of constraint 
checks to ensure that it is a valid command.  Any pre-
requisite states required by the command are checked (such 
as the communications system being in the correct mode to 
accept a command).  Using SCL to check these constraints 
(while included in the CASPER model) provides an 
additional level of safety to the autonomy flight software.

3.4 Model-based Diagnosis 
More recently(Fall 2004) we have begun flying the 
Livingstone 2 diagnosis system.  Both L2 and CASPER 
use models of the spacecraft separate from the reasoning 
engine: the models are tailored for a particular application 
without the need to change the software, allowing reuse of 
the advanced reasoning software across applications. The 
intent is that a trained subsystem engineer could build these 
models even at the design stage. The diagnostic capability 
of an on-board agent can then use the models to monitor 
the health of the spacecraft and detect faults.  The most 
significant advances of L2 over previous work which were 
demonstrated are: 

• Multiple Hypotheses and Multiple Hypotheses 
with Backtracking - Capability to track multiple 
diagnostic hypotheses and revise hypotheses 
given new evidence (backtracking), important in 
any complex system;  

• Diagnosis During Transients - Capability to 
monitor the spacecraft state and diagnose faults 
during transients, both under partial observability 
(before telemetry responses are seen) and whilst 
the physical dynamics of the system are settling. 

 
3.5 Status 
 
 The ASE software has flown in a series of increasing 
tests beginning in March 2003.  Full autonomous science 
operations were first demonstrated in January 2004.  As of 
February 2005, ASE software had been used to 
successfully acquire over 1000 science images and had 
operated as long as three weeks continuously.  Our 
operations have been so successful the EO-1 flight 
operations team now uses the ASE software for normal 
operations.  
  



 

4. Systems and Architectural Lessons Learned 
on ASE 
 
One of the most important lessons learned in the flight of 
ASE was that the overall architecture and systems used 
were extremely synergistic and key to the success of the 
experiment.  The two components that represent mission 
operations and spacecraft constraint knowledge (CASPER 
and SCL) have very different representations.  CASPER 
uses an activity centered model that represents spacecraft 
states, resources, and timing requirements.  SCL easily 
encodes procedures in the form of Do A then Do B then 
wait for condition C, then do E.  These varied 
representations were invaluable in representing a wide 
range of operations situations and responses (this result is 
consistent with other experiences in automated planning 
[16 17]).   
 Additionally, the ASE layered architecture enabled 
redundant implementation of safety constraints.  Design of 
these constraints included a spacecraft safety review. In 
this process, experts from each of the spacecraft subsystem 
areas (e.g. guidance, navigation and control, solid state 
recorder, Hyperion instrument, power, …)  studied the 
description of the ASE software and commands that the 
ASE SW would execute and derived a list of potential 
hazards to spacecraft health.  For each of these hazards, a 
set of possible safeguards was conjectured: implemented 
by operations procedure, implemented in CASPER, 
implemented in SCL, and implemented in the FSS.  Every 
safeguard able to be implemented with reasonable effort 
was implemented and scheduled for testing.  Such analysis 
for two risks is shown below. 

Table 1. Sample safety analysis for two risks. 
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 Another important theme which was validated by flight 
experience is that encoding information in models rather 
than code yields many benefits.  First, models are often 

more readable and directly represent the intent.  This 
results in more rapid encoding, easier validation, and 
shared understanding of the overall system by larger 
elements of the team.  Second, updates to the overall 
system that only require a model change are much easier.  
Code changes required that code patches be generated, 
uploaded and implemented (as patches to the executable 
binary onboard), a process expensive in effort, time, and 
filled with chances for mistakes.  In the worst case, 
extensive code changes could require a complete binary 
image upload (see below).  In contrast, model changes 
require an upload of a text or binary file and a restart of the 
ASE control software, a much easier process. 

10 Related Work, and Conclusions 
In 1999, the Remote Agent experiment (RAX) [10] 
executed for a several days onboard the NASA Deep Space 
One mission.  RAX is an example of a classic three-tiered 
architecture [5], as is ASE.  RAX demonstrated a batch 
onboard planning capability (as opposed to CASPER’s 
continuous planning) and RAX did not demonstrate 
onboard science.  PROBA [11] is a European Space 
Agency (ESA) mission demonstrates onboard autonomy 
and launched in 2001.  However, ASE has more of a focus 
on model-based autonomy than PROBA. 
 The Three Corner Sat (3CS) University Nanosat mission 
used CASPER onboard planning software integrated with 
the SCL ground and flight execution software [1].  The 
3CS mission was launched in December 2004 but the 
spacecraft were lost due to a deployment failure.  The 3CS 
autonomy software includes onboard science data 
validation, replanning, robust execution, and multiple 
model-based anomaly detection.  The 3CS mission is 
considerably less complex than EO-1 but still represents an 
important step in the integration and flight of onboard 
autonomy software. 
 More recent work from NASA Ames Research Center is 
focused on building the IDEA planning and execution 
architecture [9].  In IDEA, the planner and execution 
software are combined into a “reactive planner” and 
operate using the same domain model.  A single planning 
and execution model can simplify validation, which is a 
difficult problem for autonomous systems.  For EO-1, the 
CASPER planner and SCL executive use separate models.  
While this has the advantage of the flexibility of both 
procedural and declarative representations, a single model 
would be easier to validate.  We have designed the 
CASPER modeling language to be used by domain experts, 
thus not requiring planning experts.  Our use of SCL is 
similar to the “plan runner” in IDEA but SCL encodes 
more intelligence.  The EO-1 science analysis software is 
defined as one of the “controlling systems” in IDEA.  In 
the IDEA architecture, a communications wrapper is used 
to send messages between the agents, similar to the 
software bus in EO-1.  In the description of IDEA there is 
no information about the deployment of IDEA to any 
domains, so a comparison of the performance or 
capabilities is not possible at this time.  In many ways 
IDEA represents a more AI-centric architecture with 



 

declarative modeling at its core and ASE represents more 
of an evolutionary engineered solution. 
 ASE was originally scheduled for flight on the Techsat-
21 mission [14].  However this mission was cancelled and 
the software was adapted for flight on EO-1.  The principal 
changes from the Techsat-21 to EO-1 are that the science 
payload was changed from a synthetic aperture radar 
(SAR) to a hyperspectral imaging device (Hyperion).  This 
change requires significant alteration to the science targets 
and analysis algorithms.  The basic software architecture 
and components (e.g. CASPER and SCL) have remained 
the same.  This paper also reports on some of our 
experiences in getting the software to flight and operations. 
 ASE on EO-1 demonstrates an integrated autonomous 
mission using onboard science analysis, replanning, and 
robust execution.  The ASE performs intelligent science 
data selection that will lead to a reduction in data 
downlink.  In addition, the ASE will increase science 
return through autonomous retargeting.  Demonstration of 
these capabilities onboard EO-1 will enable radically 
different missions with significant onboard decision-
making leading to novel science opportunities. The 
paradigm shift toward highly autonomous spacecraft will 
enable future NASA missions to achieve significantly 
greater science returns with reduced risk and reduced 
operations cost. 
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