Onboard Detection of Active Canadian Sulfur Springs: A Europa Analogue

Rebecca Castano (1)
Kiri Wagstaff (1)
Damhnait Gleeson (2)
Robert Pappalardo (1)
Steve Chien (1)
Daniel Tran (1)
Baback Moghaddam (1)
Benyang Tang (1)
Brian Bue (1)
Thomas Doggett (3)
Dan Mandl (4)
Stuart Frye (5)

(1) Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA, 91109
<firstname.lastname>@jpl.nasa.gov

(2) Laboratory for Atmospheric and Space Physics and NASA Astrobiology Institute
University of Colorado
Boulder, CO 80309-0392
<firstname.lastname>@colorado.edu

(3) Dept of Geological Sciences
Arizona State University
Box 871404
Tempe, AZ 85287-1404
<firstname.lastname>@asu.edu

(4) Goddard Space Flight Center
8800 Greenbelt Road
Greenbelt, MD, 20771
Dan.mandl@gsfc.nasa.gov

(5) Noblis
3150 Fairview Park Dr
Falls Church, VA, 22042
Stuart.frye@gsfc.nasa.gov

Abstract

We discuss a current, ongoing demonstration of in-situ onboard detection in which the Earth Observing-1 spacecraft detects surface sulfur deposits that originate from underlying springs by distinguishing the sulfur from the ice-rich glacial background, a good analogue for the Europan surface.

In this paper, we describe the process of developing the onboard classifier for detecting the presence of sulfur in a hyperspectral scene, including the use of a training/testing set that is not exhaustively labeled, i.e. not all true positives are marked, and the selection of 12, out of 242, Hyperion instrument wavelength bands to use in the onboard detector.

This study aims to demonstrate the potential for future missions to capture short-lived science events, make decisions onboard, identify high priority data for downlink and perform onboard change detection. In the future, such capability could help maximize the science return of downlink bandwidth-limited missions, addressing a significant constraint in all deep-space missions.

1. Introduction

The Jovian moon Europa represents an intriguing potential for life within our solar system. Yet there are considerable challenges facing any mission to find such habitats. One such challenge is that of efficiently searching for evidence of life given limited ability to return data, roundtrip light time delays, and the anticipated scarcity and limited scale of indicators. We describe an active demonstration of onboard data analysis for detection of surface sulfur deposits that originate from underlying springs. This demonstration serves as a key component in validating that such signatures can be detected from orbit and that onboard decision-making capability could be used to increase the efficiency of such a search.

EO-1’s existing Autonomous Sciencecraft [1] onboard decision-making capability enables the spacecraft to perform onboard analysis of data from the Hyperion hyperspectral instrument and use positive or negative detections to take further actions (such as
Closing the control loop onboard greatly increases the efficiency of search and monitoring because data lacking events/signatures of interest need not be downlinked.

We have expanded onboard analysis capability by adding classifiers to distinguish sulfur from the ice-rich glacial background on the spacecraft. Building on previous work that produced a snow, water, ice, and land (SWIL) pixel classifier [2, 3], we have developed a Support Vector Machine (SVM) to automatically detect the presence of sulfur in a hyperspectral scene. We describe the process of developing this detector, including the use of a training/testing set that is not exhaustively labeled, i.e. not all true positives are marked. Restricted onboard capability limits any processing to 12 of the total 242 Hyperion instrument wavelength bands. A key design choice for a classifier is which 12 bands to use. We empirically compare performance when using manually selected bands to that obtained when using bands chosen by automated feature selection techniques.

Historically, spacecraft collect data and transmit it to Earth for analysis. There are two primary motivations for analyzing science data onboard a spacecraft. The first is that onboard analysis can enable prioritization of data by identifying the highest priority data for transmission. This is particularly relevant for the (common) situation in which downlink bandwidth is severely limited and spacecraft instruments are capable of collecting more data than can be transmitted to Earth. By collecting data at the capacity of the instrument and analyzing it onboard, there is significantly increased opportunity to identify rare features or events of interest. The second motivation for onboard science data analysis is to enable the detection of and reaction to dynamic events. For example, with an eight-hour round trip light time, timely reaction to an event on Europa would be possible only if the event were detected onboard and the spacecraft equipped to react.

There are a number of challenges to analyzing science data onboard a spacecraft including limited processing speed, minimal memory, a restricted analysis/reponse timeframe, and the lack of calibrated data available onboard. In some cases, such as the domain described in this paper, it is only possible to access onboard a limited portion of the collected data.

Considerable effort has been devoted towards autonomous rover science including at JPL [4, 5], NASA Ames [6], and Carnegie Mellon University [7, 8]. In contrast to the current work, these efforts have focused on issues relevant to surface operations. Another related effort is that of the EO-1 sensor web [9] in which the EO-1 satellite is networked with other satellites and ground sensors via software and the internet. The current work is focused on detection of events on a single spacecraft, the results of which could potentially be used to trigger other assets.

2. Europa and Borup Fiord Pass, Canada

In the Borup Fiord Pass on Ellesmere Island in the Canadian High Arctic, sulfur-rich waters seep from the top of a 200-meter-thick glacier precipitating deposits of sulfur, gypsum and calcite that stain the ice. The physical and chemical conditions of the spring water and surrounding environment, together with mineralogical and isotopic signatures, suggest that micro-organisms are active in the system [10]. This site and nearby regions may provide significant information about supraglacial sulfur springs and potential associated biological activity, i.e. signs of life beneath the ice. The site is considered an analog to Europa where ruddy dark surface markings (Figure 1) are thought to contain sulfur-rich materials [11] that may reflect the chemistry of a subsurface ocean, and possibly of organic materials carried upward [12].

Figure 1. Ruddy regions on Europa as imaged by the Galileo spacecraft (from [12]).

Jupiter’s moon Europa is an extremely high priority for spacecraft exploration because its probable subsurface ocean represents a possible habitat for microbial life. A variety of Europa mission studies have been conducted [13, 14, 15] and it remains a leading candidate for NASA’s next Outer Planets flagship mission. The spring system at Borup Fiord could potentially be analogous to Europa in a number of ways. The sulfur-rich chemistry of the supraglacial deposits may parallel that of Europa’s ruddy spots. The glacial hydrology of the system operating at Borup may offer insights to the “plumbing” system at Europa. Borup’s microbiological environment could lend insights to possible microbiologic niches at Europa [12]. Thus, study of the Borup Fiord Pass site could be critical in...
the search for indicators of life beneath the ice of Europa.

Understanding how the complex system at Borup Fiord operates requires investigation of the geological, hydrological, geochemical, and microbiological properties of the site. One of the methods to conduct these investigations is through remote sensing. Remote sensing can provide details on the location and identification of the precipitates present on the ice in addition to aiding in mapping the regional geology and studying the temporal coverage of surface spring activity. Hyperspectral imagery from the Hyperion instrument onboard the EO-1 spacecraft provides high-resolution spectral data in narrow swaths along the area of interest. Hyperion and ASTER [16] coverage can be linked to spectral field observations and geochemical measurements that serve as ground truth.

3. Autonomous Sciencecraft

The Autonomous Sciencecraft (ASE) is a JPL-led, NASA New Millennium Program mission containing new technology in the form of software which has been flying on the Earth Observer-1 (EO-1) satellite since the fall of 2003 [1]. This new technology facilitates autonomous science-driven capabilities. Among the ASE flight software is a set of onboard science algorithms designed for autonomous data processing, to identify observed science events [1, 2]. Using the output from these algorithms, ASE has the ability to autonomously modify the EO-1 observation plan, retargeting itself for a more in-depth observation of a scientific event in progress with current response times on the order of hours. Several onboard science algorithms are associated with ASE for detecting dynamic events. Events detected include volcanic activity [17], floods [18] and cryosphere events [3]. In this work, we have expanded the detected features to include the presence of sulfur on an ice background.

3.1 Spacecraft and Instrument

EO-1, managed by NASA’s Goddard Space Flight Center and also part of the same New Millennium Program, is designed to validate new technologies for remote sensing. It was launched from Vandenberg Air Force Base on 21 November 2000 and placed in a sun-synchronous orbit with an altitude of 705 km and a 10:01 AM descending node. The EO-1 payload is comprised of three instruments: Hyperion, Advanced Land Imager (ALI) and the Linear Etalon Imaging Spectral Array (LEISA) Atmospheric Corrector. ASE analyzes data from the Hyperion instrument onboard the spacecraft.

The Hyperion instrument [19] consists of two imaging spectrometers, covering the visible/near infrared (VNIR) and short-wave infrared (SWIR), respectively, which share a common telescope, producing hyperspectral images with a 30 m/pixel spatial resolution and 10 nm/band spectral resolution. Hyperion images are 7.5 km in width, with an along track length that depends on the duration of the data collect, but typically 60 km (8 seconds) or 90 km (12 seconds). Due to onboard memory and data transfer limitations, we analyze a 7.5 km by 15 km subset of the captured image when detecting sulfur signatures. The VNIR spectrometer has 50 calibrated bands, ranging from 0.43 to 0.93 μm, and the SWIR spectrometer has 148 calibrated bands, ranging from 0.91 to 2.4 μm. Onboard constraints permit access to only 12 of the bands of the Hyperion instrument, although these 12 are selectable from the full complement.

There are two identical processors onboard the EO-1 spacecraft, one for the primary spacecraft operations and the other for the payload. ASE uses the payload processor. It is a Mongoose V CPU with a processor speed of 8 MIPS and 256 MB of RAM. With this hardware constraint, the Hyperion data cannot be fully processed from Level 0 (raw) data to Level 1 (calibrated) data [20]. Instead the data are partially processed to an onboard product designated Level 0.5, using data from a dark calibration image collected within a few minutes of the actual image.

Features of Level 1 data processing [20] not performed in the onboard processing include smear and echo correction to the SWIR bands, as well as interpolation between pre- and post- dark calibration images before dark image subtraction. While both Level 0.5 and Level 1 data are identical in VNIR, they diverge in SWIR, where the lack of smear and echo correction in Level 0.5 gives higher values than in the fully processed data. Because Level 0.5 data are not fully calibrated, the radiance and reflectance values for SWIR bands calculated onboard the spacecraft can be considered as pseudo-radiance and pseudo-reflectance.

4. Detector Implementation

The sulfur detectors in this effort were developed using supervised learning methods. Supervised classification employs a priori knowledge of a site and the identity of surface cover materials of interest in a training image or image set. Training areas are used to develop or train a classification algorithm to recognize land cover classes based on their spectral signatures. In this instance, a labeled training data set was provided
by a domain expert who had first-hand knowledge of
the site. A small set of pixels in a scene of the target
location was manually labeled as ice, land, or sulfur by
the domain expert. Linear Support Vector Machine
(SVM) classifiers [21, 22] were then trained using this
data. Since there are limited examples of the presence
of sulfur and few scenes available, the training set was
necessarily limited. Further, as the sparse sulfur pixels
had to be located manually, it is possible that there
could be (rare) unlabeled pixels that do truly contain
sulfur. The objective of such a classifier is to
correctly identify the class of new pixels, where in this
case the focus is on sulfur present or not. The design
goal was to correctly classify all labeled pixels with
highest consideration given to not missing any labeled
sulfur pixels. A secondary consideration was to
minimize false alarms, where unlabeled pixels were all
considered negative (no sulfur).

In this discussion, we focus our attention on the
selection of which bands to use in the classifier. The
Hyperion instrument has 242 spectral bands, however
due to limited processing power only 12 bands can be
accessed onboard. The selection of which 12 bands to
use represented a key design decision. Identifying the
optimal 12 bands is a non-trivial, NP-hard ‘242-
choose-12’ subset selection problem with over six
million trillion possible combinations. With this many
possibilities, an exhaustive search would require over
100 million years of computation. This being
infeasible, we considered three practical approaches to
selecting bands. The first is the traditional manual
selection by a domain expert. We also looked at two
automated feature selection methods: recursive feature
elimination (RFE) and Greedy Sparse Linear
Discriminant Analysis (GSLDA).

4.1. Domain Expert
The foundational approach to selecting which
bands or features to use was to employ the domain
knowledge of an expert. The expert was skilled in
spectroscopy as well as possessing an extensive
knowledge of the field site and the target sulfur
signatures. Based on experience with the site, the full
spectra of candidate pixels were manually inspected
along with representative spectra of non-target
material. By studying the spectral features, key bands
that could best be used to discriminate the signatures
of interest from what is considered the background
were identified.

4.2. Recursive Feature Elimination (RFE)
The goal of Recursive Feature Elimination (RFE)
[23] is to identify a small subset of highly
discriminative features. The RFE algorithm begins
with the full set of features and recursively removes
the feature with the minimum variation in a cost
function. The key to the algorithm is the insight that
the weights multiplying the inputs of a given classifier
can be used as feature ranking coefficients. Inputs that
are weighted by the largest value have the greatest
influence on the classification decision. Therefore, if
the classifier performs well, those inputs with the
largest weights correspond to the most informative
features. The algorithm proceeds by training a
classifier using the current available set of features.
The feature with the smallest weight is then removed
and a classifier is then trained on the reduced set of
features. This process is repeated until the desired
subset is achieved, in our case 12 features. Note that,
although a classifier is trained at each step of
algorithm, the method is relatively efficient in
addressing the combinatorial problem of identifying
the best subset of features by greedily eliminating
features.

4.3. Greedy Sparse LDA (GSLDA)
Greedy Sparse LDA (GSLDA) [24, 25] is a state-
of-the-art feature selection technique that uses a bi-
directional (forward/backward) greedy search
algorithm to find feature subsets which jointly
maximize the Fisher linear discriminant class-
separability criterion for a binary classification
problem. It formulates and solves this NP-hard
combinatorial optimization problem as a sparse
generalized eigenvalue decomposition. It does so by
first estimating two covariance matrices from the raw
data: the between-class scatter and the within-class
scatter matrices. It then maximizes the corresponding
Generalized Rayleigh Quotient (or principal
eigenvalue) with a sparse generalized eigenvector
whose cardinality matches the number of features
desired.

5. Experimental Results
5.1. Band Selection Discussion
The bands identified by the three feature selection
approaches are shown in Table 1. Inspection of the
table shows a significant overlap in the actual bands
selected. In particular, seven bands (bolded) were
selected by all three methods. Interesting to note is
that the two automated methods each selected two
higher wavelength bands while the expert did not
choose any in this wavelength region.
Table 1. Band Selection Results.

<table>
<thead>
<tr>
<th>Expert</th>
<th>RFE</th>
<th>GSLDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>Band</td>
<td>Band</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We compared the performance of classifiers trained using each of these three subsets. As mentioned earlier, the set of labeled data is extremely limited. There were a total of 151 pixels labeled, of which 18 were sulfur and the remainder non-sulfur. Each of the three classifiers correctly classified 150 of the 151 pixels (99.34% correct). All three misclassified the same non-sulfur pixel. We also evaluated the full image containing primarily unlabeled pixels. Results are shown in Table 2.

Table 2. Classification of unlabeled pixels.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Manual</th>
<th>RFE</th>
<th>GSLDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td>460</td>
<td>660</td>
<td>880</td>
</tr>
<tr>
<td>Non-sulfur</td>
<td>869333</td>
<td>869333</td>
<td>869113</td>
</tr>
<tr>
<td>Potential false alarms</td>
<td>0.053%</td>
<td>0.076%</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

Finally, we mention the time to perform the band selection. Manual identification required an expert with years of spectral data analysis and extensive field experience to take several days to inspect the data and select the key bands. The RFE method took around 10 seconds to compute (Python) while the GSLDA took 1.23 seconds (Matlab). RFE computes an ordered ranking of features from least to most significant and the GSLDA algorithm identified subsets of all sizes (not just 12 bands). Thus, both of the automated methods implicitly compute subsets of sizes other than twelve, should more or fewer bands be available. Both of the automated methods do, however require labeled data for training.

5.2. Onboard Experiments

Classifiers based on the domain expert selected bands and the RFE selection method have been
uploaded and run onboard the EO-1 spacecraft. Initial results from these two classifiers run while there was still daylight at the site are displayed in Figure 2 which show the correct detection of sulfur at the known field site. The total number of pixels identified as sulfur for each experiment is shown in Table 3. The number of actual sulfur pixels is thought to be in the range of 20, thus there is approximately a 0.2% false alarm rate. These results are significant in demonstrating not only the feasibility of identifying the signatures of interest in the hyperspectral data, but the practicality and effectiveness of performing the analysis onboard a spacecraft in the restricted environment available.

Table 3. Onboard classifier results.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Manual</th>
<th>RFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td>605</td>
<td>507</td>
</tr>
<tr>
<td>Non-sulfur</td>
<td>261539</td>
<td>261637</td>
</tr>
<tr>
<td>Percent identified as sulfur</td>
<td>0.23%</td>
<td>0.19%</td>
</tr>
</tbody>
</table>

5.3. Data Analysis

In this section, we show a more extensive comparison between the expert-band SVM and the RFE-band SVM. Figure 3 shows the number of pixels classified as sulfur in a set of 12 images for two different classifiers. Ten of the images are from 2007 while two are from the summer of 2006. Manual indicates the classifier was trained and run using data from the bands manually selected by an expert, while RFE indicates the classifier was trained and run using the bands selected automatically via the RFE algorithm. For these images, the manual-based classifier typically identifies more pixels as sulfur.

Table 4 provides more insight into the consistency of pixel classification of the two classifiers. As the table shows, there is considerable agreement, although the RFE-based classifier deemed a number of pixels ice that the manual-band based classifier selected as land. Finally, for this section, we show the progression of the coverage over the course of the 2007 summer in Figure 4. A small subimage, corresponding to the subregion shown in Figure 2 has been focused on as it is the location of the known sulfur deposits.

6. Conclusions

A broad objective of this study is to demonstrate the potential for future missions to capture short-lived science events, make decisions onboard, and identify high priority data for downlink. The current results show considerable promise and we are expanding our effort in several avenues. First, we would like to conduct more extensive onboard and ground-based tests with a more comprehensive label set. Second, we would like to compare the band selection methods to several baseline approaches. Third, while the false alarm rate is relatively low, we would like to have it even lower, which could be accomplish through post-processing after initial classification. We also are looking to demonstrate the effectiveness of the methods on a broader range of applications including detection of change. Ultimately, such capability can help maximize the science return of bandwidth-limited downlink channels, addressing a significant constraint in all deep-space missions.

7. Acknowledgments

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding was provided by the Interplanetary Network Directorate Technology Development program and NASA’s New Millennium Program.

<table>
<thead>
<tr>
<th></th>
<th>RFE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Land</td>
<td>Ice</td>
</tr>
<tr>
<td>Manual</td>
<td>22.56</td>
<td>3.53</td>
</tr>
<tr>
<td>Ice</td>
<td>0.07</td>
<td>73.62</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>Date</td>
<td>Sub-Image</td>
<td>Manual</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>2007.05.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.06.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.07.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.07.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.07.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.08.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.08.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.08.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.08.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007.09.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Progression of surface coverage from May through September 2007. For the classification images, green is land, cyan is water, and yellow is sulfur.
8. References

