NASA SensorWeb and OGC Standards for Disaster Management

Dan Mandl 6/18/10
NASA/GSFC
For big software projects, cost is a function of amount of code.
Our Reality...
But we have made some good progress...
Number of OGC Standards Has Increased Significantly

which would increase our cost!
So Our OGC Compliance Has Decreased
General Approach

- **Goal:** Enable user to cost-effectively find and create customized data products to help manage disasters
 - On-demand
 - Low cost and non-specialized tools such as Google Earth and browsers
 - Access via open network but with required security (at minimum to NASA requirements)
- **Use standards to interface various sensors and resultant data**
 - Wrap sensors in Open Geospatial Consortium (OGC) standards
 - Wrap data processing algorithms and servers with OGC standards
 - Use standardized workflows to orchestrate and script the creation of these data products
- **Target Web 2.0 mass market**
 - Make it simple and easy to use
 - Leverage new capabilities and tools that are emerging
 - Improve speed and responsiveness
SensorWeb High Level Architecture

Data Processing Node
- Web Coordinate Transformation Service (WCTS)
- Web Processing Service (WPS)
- Web Coverage Service (WCS)

Internet

Sensor Data Products

Campaign Manager API

RSS Feeds

Web Coverage Processing Service (WCPS)

Components outlined in red are part of NASA generic SensorWeb toolbox
Present NASA SensorWeb 2.0

SPS = Sensor Planning Service
OPSB = OGC Publish/Subscribe Basic
WfCS = Workflow Coverage Service
WCS = Web Coverage Service
WCPS = Web Coverage Processing Service
WPS = Web Processing Service

EO-1 & HyspIRI Testbed

Distribute data via file share
Execute Workflow
Data Atom Feed
Create/Visualize Workflows

Alerts & Notifications

Task
GetFeasibilities
SubmitTask

SPS

WfCS
Flows

WPS
Composite

WPS

WCPS
Algorithms

WCPS backend components

Execute Algorithm
Custom Products
Create/Visualize Algorithms

Gnu C Compiler/Linker
Parser /Code Generator

Asynchronous Message Queue Protocol

ENVI/IDL

Dynamic SWAMO Agent Upload
NASA SensorWeb 3.0 Approach

SPS = Sensor Planning Service
OPSB = OGC Publish/Subscribe Basic
WfCS = Workflow Coverage Service
WCS = Web Coverage Service
WCPS = Web Coverage Processing Service
WPS = Web Processing Service

Alerts & Notifications
- Distribute data via file share
- Execute Workflow
- Data Atom Feed
- Create/Visualize Workflows

Task
- Get Feasibilities
- Submit Task

Alerts & Notifications
- Distribute data via file share
- Execute Workflow
- Data Atom Feed
- Create/Visualize Workflows

SPS
- GetFeasibilities
- SubmitTask

WfCS
- Flows

WPS
- Composite

WPS
- Execute Algorithm
- Custom Products
- Create/Visualize Algorithms

WCPS
- Parser / Code Generator
- Asynchronous Message Queue Protocol

ENVI/IDL

EO-1 & HyspIRI Testbed

Dynamic SWAMO Agent Upload

Gnu C Compiler / Linker

WCPS backend components
NASA SensorWeb 3.0 Unified Restful Interface with Security

Service Document

Get, Post, Put, Delete

Atom Feeds

RESTful / Secure Application Process Interface (API)

Get Feasibilities

SubmitTask

Resources

Flows

Burnscar Composite

Algorithms

Security / OpenID / OAuth

Other Nodes

Security

Data

EO-1 & HyspIRI Testbed

Distributed Security Providers

2-Factor Authentication
One Example of Decreased Complexity to Develop Application Processing Interfaces (API’s)

REST RPC bindings specifications

<table>
<thead>
<tr>
<th>Interfaces for SensorWeb 2.0</th>
<th>Pages for specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS 1.0</td>
<td>186</td>
</tr>
<tr>
<td>WPS 1.0</td>
<td>73</td>
</tr>
<tr>
<td>WCPS 1.0</td>
<td>66</td>
</tr>
</tbody>
</table>

RESTful binds (aka AtomPub specifications)

<table>
<thead>
<tr>
<th>Interfaces for SensorWeb 3.0</th>
<th>Pages for specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consolidated RESTful API</td>
<td>27</td>
</tr>
</tbody>
</table>

Comparison does not include SOS, WNS/SAS, WFS, WfCS….
Increased complexity is a barrier to entry for development, sustaining engineering and usage.
Examples of SensorWeb Usage for Disasters
The 2009 Disaster

- In February and March 2009, torrential rains increased water levels in the Zambezi, Okavango, Cunene and Chobe Rivers.
- This led to a 40-year flood in the Caprivi, Kavango and Cuvelai basins, affecting some 750,000 people (37.5% of the population of Namibia)
- Whole villages were cut off and had to be relocated into camps. Some 50,000 people were displaced
- Livestock were stranded and died of hunger
- 102 people died
Flooded village in Northern Namibia viewed from helicopter by expert team during workshop in January 2010 (Photo: Dr. Joerg Szarzynski)
Formation of Flood-Disease Early Warning Project

• Against this background, major goal of the Namibia SensorWeb Pilot Project is a scientifically sound, operational trans-boundary flood management decision support system for Southern African region to provide useful flood and waterborne disease forecasting tools for local decision makers.

• Pilot Project established under the auspices of:
 – Namibian Ministry of Agriculture Water and Forestry (MAWF), Department of Water Affairs
 – Committee on Earth Observing Satellites (CEOS), Working Group on Information Systems and Services (WGISS)
 – And moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER).

• Effort consists of identifying and prototyping technology which enables the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management.
Timeline of Activities Related to Namibia Early Warning Flood Project

- **1st Charter activation**: Mar 2008
- **2nd Charter call**: Aug 2009
- **3rd Charter call**: Jan 2010
- **1st Technical Advisory Mission**: Feb 2008
- **2nd UN-SPIDER Bonn WS**: Mar 2008
- **3rd UN-SPIDER Bonn WS**: Jan 2010
- **Technical Expert Meeting Bonn**: Aug 2009
- **Regional Meeting Namibia**: Oct 2009
Flood SensorWeb Workshop Held in Winhoek, Namibia in January 2010

Front Row: left to right, Gail D. Mathieu, U.S. Ambassador to Namibia, John Mutorwa, Minister of Ministry of Agriculture, Watery and Forestry (MAWF) and Kari Egge, UN Resident Coordinator in Namibia

The following agencies contributed to establish an international expert team and sent representatives to this field mission: European Commission, Joint Research Center (JRC), Italy; German Aerospace Center (DLR), Germany; German Technical Cooperation (GTZ), Windhoek, Namibia; International Institute for Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands; National Aeronautics and Space Administration (NASA), US; NOAA / National Environmental Satellite Data and Information Service (NESDIS), US; Ukraine Space Research Institute (USRI), Ukraine; UNESCO; United Nations Resident Coordinator, Namibia; United Nations Office for Outer Space Affairs (UNOOSA), Austria/Germany; and World Meteorological Organisation (WMO).
• Namibian Dept of Hydrology installing flood gauges and rain gauges
• Correlating ground measurements with satellite imagery to calibrate imagery and thus improve flood forecast models
Top Level Flood SensorWeb Functional Flow

Request for satellite imagery in area of interest

Customized plan of needed satellite images

Flood alerts to automated tasking

Flood conditions

Flood alerts to user

Campaign Manager

Compare to history

ground flood measurements
To validate model

Improved Flood Prediction Model

*SPS – Sensor Planning Service
Namibian Flood Early Warning Prototype

Namibia Short Term Pilot for 2010

- Colored areas represent catchments where rainfall collects and drains to river basins
- River gauges displayed as small circles
- Detailed measurements are available on the display by clicking on the river gauge stations.
- This display can be viewed and manipulated at: http://geobpms.geobliki.com/namibia and http://geobpms.geobliki.com/namibia2
Campaign Manager Tasking Request Page
Visualize request using Google Map

Tasking Request:
Title: Lake Lombezi test
Description: Namibia flood campaign requested by Guido Van Langenhove
Category: -17.9108 28.41185
Latitude: 24.21120262146
Longitude: day/night:
Country Code: day time
Country Name: Zambia
Zone Number: 376
Zone Name: Zambia
Region Number: 37
Region Name: Africa
Admin Code: Admin Name:
Nearby:
CreatedAt: Thu, 23 Apr 2009 02:37:14 -0000
UpdatedAt: 2009-04-23

Feasibilities
Potential Feasibility: Asset: EC-1, Date: 2009-04-24T00:02:00Z
Potential Feasibility: Asset: FORMOSAT-2, Date: 2009-04-25T00:45:28Z
Potential Feasibility: Asset: QB-2, Date: 2009-04-25T08:00:21Z
Potential Feasibility: Asset: EC-1, Date: 2009-04-27T08:25:00Z
Potential Feasibility: Asset: SPOT-5, Date: 2009-04-28T06:24:02Z
Potential Feasibility: Asset: ALOS, Date: 2009-04-29T00:35:33Z
Potential Feasibility: Asset: EC-1, Date: 2009-04-29T08:04:00Z
Potential Feasibility: Asset: QB-2, Date: 2009-04-30T02:52:57Z
Potential Feasibility: Asset: SPOT-5, Date: 2009-04-30T11:02:33Z
Potential Feasibility: Asset: EC-1, Date: 2009-05-02T00:21:00Z
Potential Feasibility: Asset: SPOT-5, Date: 2009-05-03T01:43:33Z
Deliver Level 2 Products via News Feeds to Users Along with Links to GeoTiff, KML and information about Image
Another Sample Application: Disease SensorWeb
Top Level Malaria Early Warning SensorWeb Functional Flow

Flood Predictions

<table>
<thead>
<tr>
<th>Flood Predictions</th>
<th>Flood alerts</th>
<th>Campaign Manager</th>
<th>Customized plan of needed satellite images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flood conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Request for satellite imagery in area of interest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Climate & vegetation conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EFTB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Historical epidemiological data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*SPS – Sensor Planning Service</td>
</tr>
</tbody>
</table>

Statistical disease risk alerts

- Flood alerts
- Comparison to history
- Historical epidemiological data
Malaria risk map identifies priority areas and additional resources needed to fight epidemics effectively.
Predicting Malaria in KENYA

VH provides up to 4 months advance malaria warning
Based on Vegetation Health Index system assessment conditions are very favorable (risk level 3 and 4) for malaria epidemic in

Northeast Namibia
Most of Botswana (except south)
Southern Angola
Southeast Zambia
Most of Zimbabwe
Parts of Mozambique
Recent SensorWeb Acquisitions: Oil Slick in Gulf of Mexico and Volcano in Iceland
EO-1 Target
Apr 25th
Oil Spill Initial Location
EO-1 Target
Apr 25th
Iceland's Eyjafjallajökull volcano, acquired April 17, 2010, from the Hyperion instrument onboard NASA's Earth Observing-1 (EO-1) spacecraft.

On Sat., April 17, 2010, the Hyperion instrument onboard NASA's Earth Observing-1 (EO-1) spacecraft obtained this pair of images of the continuing eruption of Iceland's Eyjafjallajökull volcano. In the left-hand image, created from visible wavelengths, new black ash deposits are visible on the ground, as well as nearby brilliant unsullied ice and snow and the volcano's brown, billowing plume. The plume's dark color reflects its large ash content. These fine particles of pulverized rock are carried high into the atmosphere, where they create a hazard for aviation and are carried long distances by the prevailing winds.
Potential Extension of Extending SensorWeb Onboard Satellites: Detecting Materials Onboard a Satellite
1. Create, edit, test algorithms/classifiers for use onboard space-based sensors.
2. Transform algorithm into mobile agent.
3. Upload mobile agent.
4. Run onboard automatically.
5. Download customized low-latency onboard generated data products.

Extension of SensorWeb Onboard

Image data products-Phil Dennison 2008
NATO Seizes Tons of Bomb Material in Afghan Raid

Tuesday, November 10, 2009
Associated Press

KABUL — International troops and Afghan police seized 250 tons of ammonium nitrate fertilizer — enough to make up to a couple hundred roadside bombs, the Taliban’s most lethal weapon in what has been the deadliest year of the war, NATO announced Tuesday.

Separately, video footage emerged of insurgents brandishing what appears to be limited stocks of U.S. ammunition in a remote area of eastern Afghanistan where eight Americans died in a battle last month.

NATO officials hoped Sunday’s raid in the southern city of Kandahar would hurt Taliban militants, whose homemade bombs have become the biggest killer of U.S. and allied troops.

Acting on a tip, international forces and Afghan police discovered 1,000 100-pound bags of ammonium nitrate fertilizer and 5,000 parts for roadside bombs in a warehouse, the military said. After the initial find Sunday, an additional 4,000 100-bags of fertilizer were found in a nearby compound. The joint forces also made 15 arrests.

The seizure included enough fertilizer to make dozens to a couple of hundred roadside bombs, said John Pike, director of the military think tank Globalsecurity.org.

The insurgents have been successful manufacturing homemade bombs from materials such as fertilizer, which is easily available in agricultural areas of the south.
Experiment with KNO3 Detection - Atacama Desert, Chile

- User uploads signature of interest to spacecraft
- Example: Potassium Nitrate (KNO3, Niter, saltpeter) (USGS Spectral Library) used in Fertilizer and Explosives. Major Source Can be Found in Atacama Desert, Chile.
Experiment with KNO₃ Detection - Atacama Desert, Chile conducted with Earth Observing 1

Product Generated Onboard: 7KB (EO-1)
Original Raw Data: 2.7GB

Potential KNO₃

Detected Pixels (blue) as Overlay on Google Earth

In Less than 1 hour with a slow onboard CPU
Conclusion

• Decrease barrier to entry in SensorWeb domain by using simpler interfaces
• Easy development and usage will enable many societal benefits at lower budgets
• Disaster management is the perfect arena to test out these concepts because there is a large demand and need internationally
Backup Charts
Sample Application: Normanton, Australia, Flood SensorWeb
February/March 2009
Normanton, Queensland, Australian Floods February 2009
Data Simulation

• **Prediction:** TRMM-based Predictive Flood Potential Model
 - Robert Adler/University of Maryland – NASA/GSFC

• **Survey:** MODIS Flood Map
 - Robert Brakenridge/ Dartmouth Flood Observatory

• **Details:**
 - Earth Observing 1 Advanced Land Imager and Hyperion
 - NASA/GSFC – Image acquisition, flood map, automation
 -- Mandl, Frye, Cappelaere
 - Radarsat Flood Image
 - MDA/Canadian Space Agency – Image acquisition
 - Space Research Institute NASU-NSAU, Ukraine – Flood Map Production
 - Serhiy Skakun and Natalia Kussul
 - Landsat Water Mask
 - Space Research Institute NASU-NSAU, Ukraine – Water Mask
 - Serhiy Skakun and Natalia Kussul
 - Formosat Flood Image
 - Taiwan National Program Science Office – Image acquisition
 - National Cheng-Kung University – Data processing
 - Cheng-Chien Liu
Normanton Floods- Google Earth view from before floods (Quickbird image)

Town of Normanton, Australia population approx 1100

Normanton Airport
TRMM-based flood potential forecast for February 6, 2009

Prediction
Specific Water Level and Lat/Long Projected for Normanton Area

FORECASTED Flood Potential at 02/06/2009 0600Z

Forecast generated at 02/05/2009 0600Z

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>WATER LEVEL & Latitude/Longitude</th>
<th>NEARBY LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>124mm -32.63 -80.88</td>
<td>33.96km from ROSARIO AIRPORT -32.92 -80.78</td>
</tr>
<tr>
<td>Argentina</td>
<td>151mm -32.88 -81.13</td>
<td>32.39km from ROSARIO AIRPORT -32.92 -80.78</td>
</tr>
<tr>
<td>Argentina</td>
<td>163mm -33.13 -80.88</td>
<td>23.41km from ROSARIO AIRPORT -32.92 -80.78</td>
</tr>
<tr>
<td>Australia</td>
<td>126mm -16.88 143.53</td>
<td>107.79km from PALMERVILLE QU-16 100 144.07</td>
</tr>
<tr>
<td>Australia</td>
<td>127mm -16.88 141.13</td>
<td>89.09km from NORMANTON QU-17 67 141.08</td>
</tr>
<tr>
<td>Australia</td>
<td>129mm -14.88 129.38</td>
<td>84.91km from PORT KEATS AWS(AUT) NT-14.23 129.45</td>
</tr>
<tr>
<td>Australia</td>
<td>129mm -16.38 143.13</td>
<td>109.00km from PALMERVILLE QU-16 00 144.07</td>
</tr>
<tr>
<td>Australia</td>
<td>131mm -15.63 141.23</td>
<td>20.25km from KOWANYAMA QU-15 47 141.73</td>
</tr>
<tr>
<td>Australia</td>
<td>137mm -16.38 141.38</td>
<td>107.91km from KOWANYAMA QU-15 47 141.73</td>
</tr>
<tr>
<td>Australia</td>
<td>138mm -16.38 143.38</td>
<td>84.68km from PALMERVILLE QU-16 00 144.07</td>
</tr>
<tr>
<td>Australia</td>
<td>139mm -16.38 143.53</td>
<td>62.37km from PALMERVILLE QU-16 00 144.07</td>
</tr>
<tr>
<td>Australia</td>
<td>148mm -18.13 146.13</td>
<td>17.03km from CARDWELL QU-18 25 146.02</td>
</tr>
<tr>
<td>Australia</td>
<td>181mm -16.63 141.13</td>
<td>116.07km from NORMANTON QU-17 67 141.08</td>
</tr>
<tr>
<td>Australia</td>
<td>187mm -16.88 143.38</td>
<td>99.04km from PALMERVILLE QU-16 00 144.07</td>
</tr>
<tr>
<td>Australia</td>
<td>201mm -16.38 141.13</td>
<td>119.57km from KOWANYAMA QU-15 47 141.73</td>
</tr>
<tr>
<td>Australia</td>
<td>216mm -17.63 146.13</td>
<td>15.56km from INNISFAIL QU-17 52 146.02</td>
</tr>
<tr>
<td>Indonesia</td>
<td>170mm -6.13 120.38</td>
<td>154.43km from ENDEH/IPI -8.80 121.60</td>
</tr>
<tr>
<td>Indonesia</td>
<td>174mm -5.13 105.63</td>
<td>51.55km from TELUKBETUNG/BRANTI -5.27 105.18</td>
</tr>
<tr>
<td>Indonesia</td>
<td>179mm -5.38 105.63</td>
<td>50.22km from TELUKBETUNG/BRANTI -5.27 105.18</td>
</tr>
<tr>
<td>Indonesia</td>
<td>224mm -5.13 105.63</td>
<td>78.64km from TELUKBETUNG/BRANTI -5.27 105.18</td>
</tr>
</tbody>
</table>

COUNTRY | **WATER LEVEL & Latitude/Longitude** | **NEARBY LOCATION** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozambique</td>
<td>168mm -25.88 32.63</td>
<td>7.07km from MAPUTO/MAVALANE -25.92 32.87</td>
</tr>
</tbody>
</table>

Use this lat/long to trigger other assets.
MODIS Flood Extent on Google Earth as KML File
February 18, 2009
Survey

Robert Brakenridge – Dartmouth Flood Observatory
MODIS Flood Extent on Google Earth as KML File
February 18, 2009
Survey- Zoom

Robert Brakenridge – Dartmouth Flood Observatory
MODIS Flood Extent on Google Earth as KML File February 18, 2009

Survey- Closeup Normanton

Robert Brakenridge – Dartmouth Flood Observatory
Article on Normanton Floods from the Northwest Star

Minister faces hazards in Gulf
TROY ROWLING
2/4/2009 9:05:00 AM
OVERFLOWING sewerage, crocodiles and mosquito-borne diseases were among the possible hazards Queensland Emergency Services Minister Neil Roberts faced when he arrived in the Gulf yesterday. Mr Roberts visited Karumba and Normanton to gauge the impact the floodwaters were having on the region.

And according to a statement released by Carpentaria Shire Council yesterday, there were quite a few issues making an impact on the isolated communities.

A spokesperson for Carpentaria Shire Council said the council was anticipating possible sewage overflows in the towns due to the inundation of pump stations.

The spokesperson also said there had been increased sightings of large crocodiles in the floodwaters surrounding Normanton and that Queensland Health had recommended the public avoid wading and playing in floodwaters due to mosquito-borne diseases.

However, despite the possible dangers, the Minister pressed on with his trip undeterred. “I’m here to be shown around the district and to talk to locals about the impact of the flooding,” Mr Roberts said. “I really need to take advice from local governments and emergency services personnel on the ground. So I’ll be waiting for their advice about what other measures need to be taken.”

The Carpentaria Shire Council spokesperson said another issue they planned to discuss with the minister was the upgrade of the Einasleigh and Gilbert crossings. They said this would enable road access for the essential re-supply of goods. The isolated communities were currently reliant on food drops via aircraft and a fortnightly barge service from Cairns to Karumba to supply food, fuel and essential items to residents in the area.

With the Norman River continuing to rise, the communities could be cut off for a further six weeks. Carpentaria Shire Council and Emergency Management Queensland met with local retailers and suppliers to discuss re-supply sustainability.
Retailers were encouraged to monitor stocks and liaise with the Council to ensure all residents had adequate food and other essential items.

A business advisor from the Department of Tourism, Regional Development and Industry was flown into Normanton at the weekend to help the businesses manage the effects of ongoing flooding on their bottom line.

His feet firmly on dry ground, Mr Roberts took time during his brief stopover in Mount Isa to thank local emergency services leaders for their hard work.

“I’ve received very good feedback from the Mayors in the local communities about the work and support the emergency service crews are doing,” he said.
Normanton Airport Ground View 2-15-09

Radarsat-2 Water regions 14 Feb 2009)
Normanton Floods - February 18, 2009 Zoom 2
Radarsat/Landsat Flood Map

Radarsat Image 2-14-09 (red), 3 meter resolution
Landsat Image pre-flood 5-6-02 (blue), 30 meter resolution

Flood maps produced by the Space Research Institute NASU-NSAU, Ukraine

Red – flood waters
Blue – Existing waters

[RADARSAT-2 Data and Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. 2009 – All Rights Reserved. RADARSAT is an official mark of the Canadian Space Agency]
Normanton with Landsat 7 5-7-02, Radarsat 2 Flood Extent Overlay February 14, 2009 and February 17, 2009 3m resolution
Goal is to calibrate River Watch measurements which use AMSR-E to calculate river flows and thus provide early warning for flooding downstream.