Section 9

ALI Lessons Learned

This work was sponsored by NASA Goddard Space flight Center under U.S. Air Force Contract number F19628-00-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

... Constantine J. Digenis
Massachusetts Institute of Technology Lincoln Laboratory
Topics of Discussion

- Programmatic Issues
- Technical Issues
- Summary
Programmatic Issues
Issue: The Grating Imaging Spectrometer (GIS) was added to ALI, three months after program start.

- The GIS integration complexity and cost and schedule impact were underestimated and ultimately led to the elimination of both the GIS and the Wedge Imaging Spectrometer (WIS).

Lesson: Mission changes should be considered very carefully
Issue: The spacecraft structure was changed from composite to aluminum ten (10) months after program start (February 26, 1997) requiring substantial redesign of ALI structures.

- The launch vehicle was changed from the Taurus to Delta 2 (January 28, 1997) increasing mass allocations.

- The Project Office traded spacecraft mass for cost and decided to switch from composite to aluminum structure.

- The impact of the resulting ALI redesign was not fully appreciated.

Lesson: Requirements and interfaces need to be frozen early in the design process.
Programmatic (3 of 3)

- **Issue:** The decision was made to build all electronics assemblies without Engineering Development Units (EDU) or Qualification Units to “reduce cost”.

 - *This delayed problem discovery which made correction more difficult and more, not less, expensive.*

- **Lesson:** The EDU serves a useful purpose and should not be skipped.

- **Issue:** The mandated 10% reserve proved inadequate for a program for flight-validation of new technologies.

 - *The new technologies incorporated in ALI required further development to produce flight hardware.*

- **Lesson:** Adequate reserves should be provided (e.g., 30%), commensurate with technology readiness, to resolve unanticipated problems and to pursue back-up options.
Technical Issues
Focal Plane Contamination

- **Issue**: Contamination accumulates over time on the ALI focal plane filters. The contaminants are boiled off through periodic bake-outs on-orbit, every 10 days, lasting 20 hours.

 - While the focal plane is warmed up, the VNIR data are still good, however, the SWIR data are not.

 - Contamination is no longer present in the SWIR bands.

 - Almost all materials used on ALI met NASA outgassing specifications including the Z-306 black paint.

 - All components were baked out. Cost and schedule sometimes drove bake-out duration decisions.

- **Lesson**: Need uniformity across the board for baking out components to minimize contamination potential in vacuum testing and on orbit.
Leaky Detectors

- **Issue**: Two ALI detectors (pixels), out of a total of 15,360, are coupling their signal to the neighboring detectors creating streaks in the images.
 - The problem was not evident in the original test data (flood illumination of focal plane detectors).
 - Special algorithms have been developed that greatly reduce the effects of leakage, virtually eliminating it.

- **Lesson**: Future Sensor Chip Assemblies should be screened to eliminate any that have leaky detectors.
Vacuum Chamber Window Effects

- **Issue**: During optical calibration under thermal-vacuum, it appeared that the focus of the instrument had shifted.
 - It was determined both experimentally and analytically, that the focus shift was due to the chamber window distortion due to the temperature gradient.
 - A technique was developed to eliminate this effect.

- **Lesson**: Understand all optical effects of thermal-vacuum chamber windows and address them in the test plan and test procedures.
Other Technical Issues (1 of 4)

- **Instrument Alignment on S/C**
 - **Issue:** ALI and Hyperion were not co-aligned.
 - Each instrument’s alignment relative to the S/C was carefully measured and recorded.

- **Instrument Pointing**
 - **Issue:** It took several weeks to establish accurate instrument pointing on-orbit.
 - S/C pointing was well established.
 - **Common Lesson:** Need a System Engineer to oversee and correct critical performance issues at the system level.
Other Technical Issues (2 of 4)

- **Internal Lamps**
 - **Issue:** The brightness of the lamps changed on-orbit (increased).
 - Filaments run hotter in zero-G because of the absence of gas convection.
 - **Lesson:** Gas filled lamps are great for checking day-to-day repeatability but should not be used as a radiometric transfer standard.

- **Subsystem Early Consideration**
 - **Issue:** It is difficult to add-on subsystems (e.g., reference lamps) that are not part of the design considerations from the beginning.
 - **Lesson:** Include all subsystems in the early planning.
Other Technical Issues (3 of 4)

- **On-orbit Data Processing**
 - **Issue:** After launch, the Level 0 data formats changed several times.
 - Shifting of pixels and bands
 - Left-right reversals
 - **Lesson:** The ICD regarding Level 0 processing and the Calibration Pipeline should be completed and frozen before launch.

- **Schedule**
 - **Issue:** The ALI schedule remained very tight even when it became clear that other parts of the program were slipping.
 - Opportunities to avoid overtime and do a more thorough job were missed.
 - **Lesson:** Harmonizing all delivery schedules can produce some program benefits.
More Lessons Learned

- Insist on thorough documentation of all vendor (subcontractor) tests.

- Document the “as-built” characteristics of each part.

- Provide a complete photo documentation of the instrument prior to delivery, with close-ups of all critical items.

- Comparison of several independent calibration techniques has proved to be extremely valuable both in ground and on-orbit measurements.

- Calibration of each detector of a large focal plane is a manageable job but requires thorough preparation of test plans, test instrumentation and associated software to process the large volume of data.
Summary

- Many of the lessons learned have a common thread: the tight development schedule and budget require greatly focused mission objectives.

- A highly motivated, dedicated team can overcome the inevitable problems associated with a high-risk technology validation mission and bring about success.