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ABSTRACT

The Advanced Land Imager (ALI) of the Earth Observing-1 (EO-1) satellite has been
extensively calibrated at Lincoln Laboratory, where it was designed and integrated. The calibra-
tions performed were radiometric, spectral, and spatial in nature. This report describes the spatial
calibration of the detector lines-of-sight. Relevant details of the ALI instrument design are
presented first. Measurements made on the focal plane array geometry and the optical distortions
of the telescope are described next. End-to-end measurements of the complete instrument were
performed by recording and analyzing static images of a Ronchi ruling. The resulting detector
line-of-sight (LOS) map is described, and a linear approximation to the optical distortion is
discussed. Finally, the process of making and analyzing theodolite measurements of the orien-
tation of the telescope optical axes relative to the ALI external reference cube is described in
some detail.
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1 INTRODUCTION

The Advanced Land Imager (ALI) of the EO-1 satellite has been described by Digenis, et al.[1].
General descriptions of the calibration of this instrument have been given in several papers [2], [3], [4].
An overview of the spatial calibrations has also been presented [5]. The preflight calibration
measurements were completed prior to instrument delivery. The analysis of those measurements has now
also been completed. This report describes the detector line-of-sight calibrations.

In order to reconstruct the ALI image data in reference to the geographic coordinates of the land
scene, many pieces of information are required. The position of the satellite and its attitude (pointing
direction) at the instant of observation obviously must be known. Equally important, the lines-of-sight
(LOS) of the many detectors, relative to the satellite body axes must be known. That information is
contained in the LOS map.

The next section describes the key features of the ALI telescope and focal plane systems. The
sections which follow cover the measurement setups and equipment, the analysis of the raw
measurements, and the detector LOS map which has been derived. An additional section describes
spectral purity, a linear approximation to the optical distortion, and its significance for future land
imaging instruments of this type. Finally, the determination of the angular relationship of the relative
detector lines-of-sight to the external ALI reference cube is described.
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Figure 7. Close-up cross-section of the MS/Pan filter-detector assembly in the X-Z plane.

2.3 DETECTOR LINE-OF SIGHT MODEL

The goal of the present detector LOS calibration is to develop a tabulation of the sight direction of
each detector on the ALI focal plane, relative to a set of reference axes. The resulting look-up table would
then be used in conjunction with satellite position and attitude data in the reconstruction of geo-referenced
images from the radiometrically-calibrated detector signals. The ALI focal plane carries 3,840 Pan
detectors, and 11,520 multispectral detectors. We considered it impractical to measure directly the LOS of
each individual detector. Instead, a parameterized model was developed to describe the apparent position
of each detector on the focal plane, as seen through the telescope. Our detector LOS map is a tabulation of
those apparent positions. To obtain the angular LOS of any detector, we treat the telescope as an ideal
imaging system, with a given focal length.

The focal length of the telescope is one obvious parameter. The physical position of a detector on
the focal plane is described by the positions of fiducial marks on the SCA, and the layout design of the
SCA. Here, we assume that the geometric precision of the photolithographic process used to make the
ROIC/detector chip is on the order of 0.1 pm, far greater than our ability to discern errors. Each VNIR
detector thus far has four uncertain parameters to determine its position: focal length of the telescope,



X-offset, Y-offset, and rotation offset of the SCA. In the case of the SWIR bands, three additional
parameters describe the offset of the SWIR detector array chip relative to the ROIC.

Even if fabricated perfectly, the ALI telescope design produces some optical distortion. Owing to
the asymmetry of the design, the distortion is not axisymmetric. Thus we are unable to apply a simple
radial distortion model. Instead, we resort to a general third-order polynomial in X (the in-track axis) and
Y (the cross-track axis). There are actually two polynomials, one for the X component of the distortion,
and one for the Y component. This leads potentially to 32 polynomial coefficients to be determined. At
least, some of the coefficients can be eliminated, such as the zero-power term, representing a fixed offset.
Still, a large number are left. It may be asked whether cubic polynomials are sufficient? As a practical
matter, good fits to the measurements appear to be achieved with them.

The fixed or fitted values of all parameters in the line-of-sight model are listed in Appendix A.

2.4 REFERENCE CUBE

Finally, The ALI includes an optical reference cube fixed to its base pallet. Section 7 of this report
describes the measurements that were made by theodolite to determine the orientation of the optical axes
of the ALI telescope relative to this ALI reference cube. After final integration with the spacecraft,

additional theodolite measurements were made to relate the ALI reference cube to the other sensors on
board the spacecraft.
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The subsystem measurements by Santa Barbara Remote Sensing (SBRS) on the assembled focal
plane used a coordinate-measuring machine to establish the locations of fiducial marks in the
metallization of each SCA, to an accuracy of ~+ 1 um. The location measurements, translated to the ALI
focal plane coordinates, are listed in TABLE 1. TABLE 2 shows the comparison between the designed
locations and the measured locations of the “A” fiducial marks and rotation angle. The location of the
pixels within each SCA, determined by photolithography, is believed to have an accuracy of ~ % 0.1 pm.

TABLE 2
ALl Coordinates of SCA Fiducial “A,” and Rotation Angles
SCA1 SCA2 SCA3 SCA4
Nominal Values
X (mm) -1.887 1.887 -1.887 1.887
Y (mm) 124.780 96.309 100.226 71.755
Omega (°) 180.00 0.00 180.00 0.00
Fitted Values
X (mm) -1.8898 1.8885 -1.8915 1.8875
Y (mm) 124.7791 96.3092 100.2230 71.7535
Omega (°) 180.0000 -0.0034 -179.9983 0.0000
Departure from
Nominal Values
X (um) -2.76 1.49 -4.54 0.47
Y (um) -0.91 0.24 -2.99 -1.46
Omega (mrad) 0.000 -0.059 0.030 0.000

3.2 OPTICAL SUBSYSTEM

To characterize the telescope distortion, a fixture bearing scribed lines was mounted at the focal
plane location. (See Figure 8.) These lines were measured at Lincoln Laboratory on a coordinate-
measuring machine. A precision theodolite was used to measure the angles of the scribe-line intersections
when seen through the telescope, to + 1 arc sec. The measured numbers are listed in TABLE 3. These

12




angular readings were then fitted to cubic polynomial functions to describe the cross-track and in-track
optical distortion. A vector map of the measured distortions is shown in Figure 9. The axes are labeled in
millimeters, and encompass the entire 15°x1.2° field of view of the telescope. The longest vector
represents 0.928 mm of distortion at the focal plane. The residuals from the fits are shown in Figure 10.
The fitted focal lengths are 942.41 mm and 945.15 mm in the cross-track and in-track directions,
respectively. The scale of the vectors is greatly enlarged in comparison with Figure 9.
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Figure 8. Focal plane surrogate fixture used for SSG measurements.
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4 END-TO-END LOS CALIBRATION

41 MEASUREMENT SETUP

Measurements on the integrated ALI instrument were carried out in a Class 1,000 clean room at
Lincoln Laboratory. The relative detector LOS measurements were done while the ALI was in a thermal
vacuum chamber, operating at nominal flight conditions. An imaging collimator was placed outside the
window of the vacuum chamber, with its un-obscured exit pupil in coincidence with the virtual entrance
pupil of the ALI instrument. It has diffraction-limited performance over a 3.2° field of view. This
Schmidt-sphere imaging collimator is fully described by Willard [6]. The methods used to establish the
collimation of the output beam are also described in that reference. A layout of the collimator bench is
shown in Figure 11. The light source is a 250 W quartz tungsten halogen lamp, with a 6-inch integrating
sphere behind the condensing lens. The exit port of the integrating sphere forms the pupil of the
collimator, in order to illuminate the ALI entrance pupil uniformly.
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Figure 11. Top view of the imaging collimator used for spatial calibrations of the ALL



A precision target was placed at the collimator focal plane. We sought a target pattern which would
provide detector signals sensitive to the various line-of-sight parameters. Ordinarily, a standard grid
target would be used, giving apparent displacements of the grid points as seen by the instrument. The ALI
detectors are arranged on the focal plane in staggered rows, not in a simple two-dimensional grid. It is
only capable of forming two-dimensional images by scanning. It was undesirable to scan the target with
the vertical slide, as was done to test end-to-end image formation, since that would introduce the
uncertainties of the scan speed and direction. It was thus not feasible to measure the relative lines of sight
with a standard grid target placed at the collimator focal plane. The approach chosen was to record static
images of a Ronchi ruling placed at the collimator focal plane. The orientation of the ruling was changed
from one image to the next. First, the lines were vertical, in the in-track direction to the ALI. Two more
images were recorded with the lines at approximately 60° and 120° from vertical. The three static images
of the Ronchi ruling which were later analyzed consisted of averages of 1,000 frames of MS/Pan detector
signals. An image was also recorded with the Ronchi ruling removed from the collimator, to establish the

“white” level signals. Similarly, dark levels were recorded, with the aperture cover of the instrument
closed.

4.2 ANALYSIS OF MEASUREMENTS

Relative lines of sight of the detectors were estimated from the Ronchi ruling images by using a
linearized, least-squares fitting process to adjust the LOS parameters until numerically modeled detector
signals matched the measured signals. The frequency of the Ronchi ruling target mounted in the
collimator was 2.000 mm™'. At the ALI focal plane, this became approximately 3.18 mm™. Thus there
were 40.2 cycles of the ruling across each SCA detector row for the vertical ruling, and 20.1 cycles for the

60° and 120° rulings. This was expected to provide great precision in determining the relative detector
lines-of-sight.

The data from the ALI were recorded and pre-processed on a Silicon Graphics workstation. The
raw files were archived to digital linear tape. Additional analysis was performed with the IDL language,
running on a 500 MHz Power Macintosh G4.

4.2.1 Signal Estimation

An advantage of the Ronchi ruling target is the simplicity of modeling the expected detector
signals. A disadvantage is the ambiguity in the relative ruling phase (number of lines) from one row of
detectors to a different row. The ambiguity was not expected to be a problem, since the relative SCA
positions were estimated to £5 um from subsystem measurements, and the period of the ruling at the
SCA’s was at least 300 um. By the time the Ronchi ruling images were finally analyzed, we had the
results of the laboratory modulation transfer function measurements on the ALI [7]. Given a spatial
frequency and orientation for the Ronchi ruling, the two-dimensional spatial transfer function for each
detector spectral band was interpolated at the discrete set of frequencies contained in the Ronchi square-
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wave pattern. In IDL, the product of the detector transfer function with the component amplitudes of the
square-wave was inverse-Fourier transformed to construct the detector response as a function of phase
within the Ronchi cycle. This was stored as a look-up table. The remainder of the calculations then used
vector algebra to find the expected phase of the Ronchi cycle at each detector.

The raw detector signals were radiometrically corrected with a simple two-point calibration. First,
background dark-level values were subtracted from the raw signals. This was also done to a “white”
image recorded with the Ronchi ruling removed from the collimator. The dark-subtracted Ronchi signals
were then normalized by dividing by the corresponding white signals. We found that the signals thus
normalized did not show a uniform level of peak values, but slowly varied from about 70% to 90% across
the field of view. Similarly, the dark lines did not drop to zero, but instead approximately to 10 to 15% of
the peak levels. Only the relative positions of the Ronchi ruling lines were of interest here, and not the
signal levels in the “white” and “black” parts of the ruling. Therefore, an additional “re-normalization”
was performed on the detector signals, to cause the peaks to be near one, and the valleys near zero. The

theoretical response vs. Ronchi phase array (which also did not range from zero to one) was modified to
match.

4.2.2 Least-Squares Parameter Fitting

In the standard IDL package is a linearized, least-squares fitting procedure called curvefit.pro. It
requires the user to supply a function of the independent variables to be fitted to a given set of measured
data values. Any number or type of parameters may be used to describe the user’s function. In this case,
the data values are the (re-normalized) measured detector signals for all three static Ronchi images, and
the independent variables are the identities of the detectors to be fitted. The parameters of the user
function include all of those listed in Section 2.3 (Detector Line-of Sight Model). The SCA 4 fiducial
position was selected to be fixed, to anchor the coordinate system of the telescope. In addition, there are
further parameters to describe the setup conditions of each image: the relative azimuth and elevation of
the collimator, the focal length of the collimator, and the frequency, orientation angle, and on-axis phase
of the Ronchi ruling.

An enhanced least-squares fitting procedure, also in IDL, called mpfit.pro was used here in
preference to curvefit.pro [8]. Among many other features, mpfit permits the user to fix individual
parameters so that they do not take part in the fitting process. This was very useful in getting the fits to
converge successfully. A flow-chart for the user-supplied function procedure we called losfunct 2.pro is
shown in Figure 12. Initial parameter estimates were stored in a file to be read by the top-level analysis
program. The input parameter file also specifies which detector signals are to be fitted.

Vector algebra was used to trace the ray from the center of each detector through the ALI telescope,
and through the collimator to its intersection with the Ronchi ruling target. Both the ALI optical system
and the collimator were treated as ideal imaging systems with added distortion. Angular rotations of the
vectors to different reference frames were accomplished in IDL by matrix multiplication.
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Telescope Focal Length and Distortions

By the nature of the laboratory testing setup, the focal length of the ALI telescope can not be
determined from the image fits independently of the collimator focal length. The fits can only tell us that
the ratio of the ALI focal length to the collimator focal length is 0.63445. If we use the design value of the
collimator focal length, which is 1485.94 mm, then the ALI focal length is 942.761 £+ 0.003 mm.
Theodolite measurements of the ALI telescope indicated a focal length of 942.436 + 0.005 mm. The
discrepancy between these two values probably arises from an error of 0.5 mm in the collimator focal

length. Analysis of images from on-orbit operations may permit a refinement of the ALI focal length
determination.

Distortion polynomial coefficients for the linear terms in X and Y are highly correlated with the
telescope focal length. We have generally fixed those terms at zero. The telescope however, could be
anamorphic. In the final analysis, the in-track (X) distortion term linear in X position was left free.

Results of Parameter Fitting

To visualize the meaning of the parameters resulting from the fit to the Ronchi images, plots have
been constructed to show the vector difference between actual LOS positions on the focal plane and
corresponding ideal LOS positions in the absence of distortions or alignment errors. The scales of the

vectors are much larger than the position scales, and are generally indicated by drawing a multispectral
detector at the scale of the vectors.

There is excellent agreement between the subsystem measurement and the Ronchi fit. Figure 15
shows the optical distortion field. The top panel shows the distortion estimated from SSG subsystem
measurements. The middle panel shows the distortion fitted to Ronchi ruling images. The bottom panel
plots the difference of the two fits, also showing the locations of the SCA’s. In each case, the small square
drawn at the center of the field indicates the size of a multispectral detector (39.6x40.0 um) at the scale of
the distortion vectors. The fit is poorest at the end of the field opposite to the detector array, where there is

no data to constrain the Ronchi fit. Fortunately, that has no influence on the lines-of-sight computed for
the detectors.

Figure 16 is a plot showing only the region of the focal plane near the MS/Pan array. It shows
locations of the detector rows and offsets of the SCA’s from their nominal locations, as vectors. The
origins of the SCA vectors are at the positions of fiducial marks used during assembly of the array. The
SWIR sub-array offset vectors are placed at the ends of the Band 7 rows. The black arrows are from the
subsystem measurement, and the red arrows resulted from the end-to-end fit. Again, a square 40 um
detector “pixel” is plotted at the scale of the vectors. Some of the difference between the subsystem and
end-to-end estimates could be caused by the filters, which were not part of the LOS model.
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Figure 17 is a plot similar to Figure 16. It shows locations of the detector rows, the offsets of the

SCA'’s, and the optical distortion field, all at the same scale, indicated by the 40 pm square detector
“pixel.”

Distortion Fit to Theodolite Measurements
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convenience. Later, when the end-to-end LOS calibration was to be analyzed, this proved to be a
continuing source of confusion. To clarify the terminology, we designated the various axes X, or Yssc,
etc. Thus we have Yss6 = — X4z, and Xssg = Yy In retrospect, it would have been better to start by
converting all SSG data to the ALI reference frame before further analysis. Yet another reference frame
was used by SBRS in designing the focal plane array. Those axes, X, and Y}, were simply rotated 180°
from Xy, and Yy, and did not cause too much trouble.

When we attempted to derive the LOS parameters by running mpfit, the process appeared to run to
completion without errors, but some of the resulting parameter values were very far from those expected.
Since we did not have accurate estimates of the errors on the measured signals, the resulting chi-squared
value (x?) was not necessarily indicative of the goodness of fit. Numerous runs were made with different
starting parameters, with similar results. When we plotted the modeled detector signals (as in Figure 13
and Figure 14) over the measured ones, it was apparent that the “fits” were not valid. The Ronchi cycles
(measured and modeled) were sometimes in phase, and often out of phase. The fits were finding local
minimum % values in parameter space, but not the correct, global minimum. We realized that many such
minima must exist, owing to the oscillatory nature of the signals being modeled. Finally, careful study
and iteration of the diagnostic signal plots allowed us to find better initial estimates of key parameters.
These included the ratio of the collimator focal length to the ALI focal length, which we estimated from
the vertical-Ronchi image. Next, the orientation angles and Ronchi phases for the other two images (~60°
and ~120°) were adjusted. Once these critical parameters were adjusted, the modeled signals were nearly
in phase with the measured ones at the start, and the fitting process found the global minimum 2 In
retrospect, a much coarser Ronchi ruling could have been used here, and a successful global fit would
have been much less sensitive to the initial estimates of the parameters.
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S DETECTOR LINE-OF-SIGHT MAP

The end product of our line-of-sight calibrations is a data file to be used for the reconstruction of
ALI images. An IDL procedure has been developed to read the output data from the end-to-end parameter
fitting procedure, and apply those parameters to reconstruct the LOS of every detector. The resulting
detector LOS map file is then read by an image reconstruction procedure, and stored in a table.

S.1 LINE-OF-SIGHT MAP FILE CONTENTS

We have chosen to represent the detector lines-of-sight as apparent positions of the detectors on the
ALI focal plane, in units of millimeters. These are used in conjunction with a specified ALI focal length
to find the angular lines of sight. Instead of computing angles, however, we generally find it simpler to
work with vectors. For example, given a detector position (x; y4) on the focal plane, the corresponding
(un-normalized) line-of-sight vector is (-x4 -ya4 furp).

The map file is in ASCII text format. It includes at the beginning the ALI focal length. This is
preceded by three lines of header text, and followed by two more header lines. The following lines
(15,360 of them) give the positions of all detectors. On each line are the band code, SCA number, pixel
number within the SCA (0 to 319 or 0 to 959), and finally the X (in-track) and Y (cross-track) positions in
mm. The current and best LOS map file is named “LOS_Oct_31_00.dat.LOS.”

5.2 SIMPLE IMAGE RECONSTRUCTION

A full Earth-referenced image reconstruction from on-orbit data collection requires all of the
spacecraft position and attitude data mentioned earlier. A simpler image reconstruction can be done
however, whether from on-orbit data or data collected in the laboratory. For this we need the detector
LOS map file, and good estimates of the scan speed and scan yaw angle. Two procedures were developed
in IDL to do this simple reconstruction for scanned images recorded in the laboratory. For these scans, the
target at the focal plane of the imaging collimator was translated vertically (in the X direction) at a speed
simulating the apparent orbital scan motion. The simplest procedure, called ALI remap.pro, simply shifts
the data samples in time (i.e., frame number) to align the various bands and SCA’s in the in-track
direction. A more exact procedure, called ALI resample5.pro, interpolates (re-samples) the data, using
the LOS map information. Inputs to both of the IDL procedures included the scan speed (in mm/sec at the
ALI focal plane). The re-sampling procedure also uses an input yaw angle. This was necessary because
the alignment of the scan slide did not exactly match the ALI X-axis.

The procedure ALl resample5.pro writes a file containing all of the re-sampled image data,
including redundant readings from overlapping detectors at the ends of the SCA’s. Another IDL
procedure, Viewit4.pro, reads that file and displays as much of it as will fit in the user’s plotting window.
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6 SPECTRAL PURITY

For a multispectral Earth-imaging system such as this, it is important to sample the scene at the very
same locations in all bands. This is the requirement of “spectral purity.” To sample the same location with
this type of instrument, the corresponding detectors of the different bands have to be aligned to follow
exactly the same ground track. The ALI sensor is unable to meet this requirement simultaneously for all
detectors in its array, because of the optical distortion. Examination of Figure 17 reveals that the
detectors in different bands appear to be at different cross-track positions. Furthermore, optical distortion
also changes the apparent band-to-band spacing, making it impossible to choose a single frame rate to
provide co-located spectral samples across the whole array.

With the detector line-of-sight map constructed, we can evaluate the degree to which the apparent

displacement of the corresponding detectors in different bands limits the spectral purity attainable with
the ALIL

6.1 LINEAR APPROXIMATION OF THE OPTICAL DISTORTION

The optical distortion field around the MS/Pan detector array, seen most clearly in Figure 17, has
considerable regularity. Over any limited area on the focal plane, this distortion can be linearly
approximated as a translation, a rotation, and a re-scaling. Figure 20 shows the residual distortion
remaining around the MS/Pan detector array, after subtraction of a vector offset (AY, AX) of (-214., 279.)
Hm, a yaw rotation of —6.49 mrad, and applying anamorphic magnification factors of (0.9935, 0.9984).
The scale of the vectors is indicated by size of the rectangle representing one MS detector. The maximum
residual distortion is then 73.3 pum, occurring in the (123, 10.2) mm corner above SCA 1.
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7.1  BASIC SETUP

Equipment used for these measurements included an electronic autocollimating theodolite (Zeiss
model Eth 2), a sturdy tripod for the theodolite, a 12-inch flat mirror in a gimbaled mount, and a stable
portable platform for the mirror. A pair of Maglite flashlights were also mounted to a bar supported on a
tripod in front of the theodolite in order to illuminate the focal plane. A plan view of the equipment
positions is shown in Figure 26.

There were four distinct positions of the theodolite. Positions 1, 2, and 3 were along a line normal
to the center of the reference flat mirror, which was kept in a fixed position. The detectors were sighted
from position 1. The front of the reference cube was sighted from position 2, and the right side of the cube
from position 3. The left side of the cube was sighted from position 4.

7.2 PROCEDURE

7.2.1 Detector Sighting

The theodolite was first placed in position 1, which was chosen to provide the least obstructed view
of the Sensor Chip Assemblies on the focal plane. The flashlights were placed to each side of and just in
front of the theodolite. They were adjusted to give the clearest view of the detectors when looking through
the theodolite. It was found to be possible to see the Panchromatic Band arrays of all four SCA’s.

After the theodolite was leveled, and put through its setup procedure, measurement readings were
made of the azimuth and elevation angles of the Pan detector arrays. Figure 27 shows the appearance of
the focal plane when looking into the ALL A sketch of the “sight pictures” for the detector measurements
is presented in Figure 28. Each end of each SCA Pan array was measured. The crosshairs were set at the
end of the double row of Pan detectors, and midway between top and bottom of the two rows.
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Next, the theodolite was turned to view the fixed reference mirror. Readings were taken when the

autocollimating projected lines were aligned with the sighting reticle. This provides an azimuth reference
for the measurements in position 1.

Front Face of Cube

The theodolite was next moved to position 2, and lowered to view the front (+2) face of the cube.
Multi-layer insulation partially obscured the cube, but autocollimation was still possible. After leveling
and re-initializing the theodolite, the azimuth and elevation readings were taken in autocollimation.
Again, the theodolite was turned to autocollimate on the reference mirror, and those angles were recorded.

Right Side of Cube

The same procedure was followed for the right (+Y) side face as for the front, after moving the
theodolite to position 3.

Left Side of Cube

Finally, the theodolite was moved to position 4. Azimuth and elevation readings were taken in
autocollimation on the left (-Y) side face of the cube. Since this position was not in line with the normal to
the reference mirror, the reference readings were not possible. That information however, would be
redundant, since the angle between that cube face and the front face had been measured previously. One
side face of the cube is sufficient to provide the angular references, but both were measured so that either
of the faces could be used during subsequent alignments.

7.3 ANGULAR MEASUREMENTS

All elevation measurements are referred to the local vertical, which is automatically determined by
the theodolite to an accuracy of 0.5 arc seconds. The azimuth reference for each position of the theodolite
is arbitrary, but the accuracy is the same as for the elevation axis. Experience of the operators has shown
that sightings of the same target are repeatable to approximately + 1 arc second.

Panchromatic Detectors
TABLE 4 lists the readings taken at the ends of each of the Pan arrays. The column labeled

“Azimuth” gives the direct theodolite readings. The “Relative Azimuth” column gives the angles relative
to the front face of the reference cube. All angles are in decimal degrees.
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Rotation Matrices

The vectors were first rotated about the Laboratory Y-axis by 8 = -0.0756° to bring the normal of
the front cube face to coincide with the Z-axis. Then they were rotated about the Z-axis by ¢ = 0.0286° to
bring the normal to the +Y cube face horizontal. In matrix algebra, this is expressed as:

X, cos¢ -—sing 0) cosf O sind) x
Yo |=| sin¢g cos¢ ( 0 1 0 |y ()
Ze 0 0 1\-sinf 0 cos) z;

where subscripts / and ¢ denote the laboratory and cube frames, respectively.

The product of the two individual matrices gives the resultant rotation matrix, which is, in
numerical form,

0.999999 -0.000499 -0.001319
0.000499 1.000000 -0.000001
0.001319 0.000000 0.899999

Vectors and Angles in the Cube Frame

Application of the rotation matrix to the sighting vectors listed in TABLE 6 results in the cube-
referenced vectors as listed in TABLE 7. For convenience, the corresponding azimuth and elevation
angles are listed as well.
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Equation (3) is first transposed to find

‘The least-squares solution of (4), according to Strang [9], is:

-1
R"=(A-AT)".A.TT ®)
Applying Equation (5) to the A and T matrices and transposing the result, we find

0.99915 0.00558 —0.0057C)
R=|0.00544 1.00072 -0.0031¢ 6)
0.00689 0.00334 0.99999

The R matrix is an approximation to the matrix for the small rotation from the telescope frame to
the reference-cube frame. For small rotation angles, the rotation matrix is the identity matrix plus a
differential matrix, [10]

R=1+e , ™

0 dQ3 —d%
E= —d.% O dQl (8)
d% —dgl 0

where d€2), d€2,, and d&2; are the differential rotation angles about the X, ¥, and Z axes, respectively.

To the degree that equation (7) is a valid approximation, the three rotations about the axes may be
performed in any order, with the same result. Let us call the three rotation angles «, B and y. Comparing
equations (6) and (8), we arrive at the following estimates for the three angles:
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a=-0.186 = 0.005 degees
B =0.361 £ 0.034 degees
Y =0.004 + 0.316 degees

The uncertainty in ¥ is much greater than for the other two angles, because that angle represents the
rotation about the telescope axis, and the two ends of the MS/Pan array which was measured with the

theodolite are separated by only 3°. Uncertainty in that angle also leads to greater uncertainty in the
angle about the Y (elevation) axis.

Finally, we construct a rotation matrix to transform vectors from the telescope frame to the
reference cube frame. First, a matrix B rotates by a about the .X axis, then C rotates by 8 about the Y axis,
then D rotates by y about the Z axis. (Each rotation moves the coordinate axes in a right-handed sense.)

1 0 0 cosf 0 cosy siny 0
B=[0 cosa sinal|,C=| 0 1 , D= —siny cosy 0] ,and
0 -sina cosa sinf 0 0 0 1

~ cos Bcosy +sinasin Bsiny cosasiny —sinfcosy +sinacosSsiny
DCB= -cosfsiny +sinasinBcosy cosacosy sin Bsiny +sinacos fcosy
cosasin —sing cosacos f§

Inserting the three angles in Equation (10), we find the overall rotation matrix:

0.99998 0.00007 —0.00630
DCB =| —0.00009 0.99999 -0.00324

(11)
0.00630 0.00324 0.99997

The three column vectors of the DCB rotation matrix represent the X, Y, and Z axes of the ALI

telescope in the frame of the reference cube. This rotation matrix must be applied the detector LOS
vectors to express them also in the reference cube frame.
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The position of a sensor chip assembly is described by the X and Y coordinates, relative to the
center of the focal plane, of a reference fiducial in the metallization layer, and a rotation angle. The
position parameters were separated into design value parameters, which were left fixed, and offset
parameters, which had nominal values near zero. The design value parameters are listed in TABLE A-2,
and the offset parameters are listed in TABLE A-3. In addition, the SWIR detectors were formed in a
separate chip, bump-bonded onto the sensor chip. To allow for placement errors of the SWIR detector
chip, a similar set of offset parameters, shown in TABLE A-4, was provided for the SWIR detectors of
each SCA. The software procedure which calculates the position of each detector within the sensor chip
has an implicit set of parameters derived from the chip layout design.

TABLE A-2

Sensor Chip Assembly Position Design Parameters

Index No. Description Value Formal Error
SCA 1, Design Values:

1 X, in-track (mm) -1.887 fixed
12 Y, cross-track (mm) 124.780 fixed
13 Rotation angle (degrees) 180.000 fixed

SCA 2, Design Values:

14 X, in-track (mm) 1.887 fixed

15 Y, cross-track (mm) 96.309 fixed

16 Rotation angle (degrees) 0.000 fixed
SCA 3, Design Values:

17 X, in-track (mm) -1.887 fixed

18 Y, cross-track (mm) 100.226 fixed

19 Rotation angle (degrees) 180.000 fixed
SCA 4, Design Values:

20 X, in-track (mm) ) 1.887 fixed

21 Y, cross-track (mm) 71.755 fixed

22 Rotation angle (degrees) 0.000 fixed
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EO-1
FPA
GSD
JPEG

LOS
MS
Pan
RGB
ROIC
SBRS
SCA
SWIR

GLOSSARY

Advanced Land Imager

Earth Observing-1

focal plane array

Ground sampling distance

A lossy image-compression standard from the Joint
Photographic Experts Group
line-of-sight

multispectral

panchromatic

Red-green-blue image color model
read-out integrated circuit

Raytheon Santa Barbara Remote Sensing
sensor chip assembly

short-wave infrared

visible and near-infrared
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